Structural characteristics of ZnO nanostructures synthesized by the thermal evaporation method

열증착법으로 합성된 ZnO 나노 구조체의 구조적 특성

  • Bang, Sin-Young (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Woo-Sik (Departemnt of Nanotechnology, Hanyang University) ;
  • Chung, Jun-Ho (Division of Materials Science and Engineering, Hanyang University) ;
  • Choi, Bong-Geun (Division of Materials Science and Engineering, Hanyang University) ;
  • Shim, Kwang-Bo (Division of Materials Science and Engineering, Hanyang University)
  • Published : 2008.04.30

Abstract

ZnO nanowires were synthesized by the thermal evaporation method and their growth mechanisms were confirmed by the characterization of the structural features depending on the growth conditions. The increase of vaporization temperature accelerates the growth rate and morphologies of ZnO nanowires were drastically changed at the temperature over 1000$^{\circ}C$, because of changed $CO/CO_2$ partial pressure. Au particles play their role on growth of ZnO nanowire as catalyst at growth temperature over 700$^{\circ}C$. The synthesized ZnO nanowires exhibit blue emission at 380 nm.

열증착법(thermal evaporation method)에 의해 ZnO 나노선을 합성하였다. 나노선 합성조건에 따른 구조적 특성을 분석하여 그 합성 메카니즘을 확인하였다. ZnO 나노선 합성 시 기화 온도가 고온일수록 성장속도가 빠르고 $CO/CO_2$ 분압이 역전되는 1000$^{\circ}C$ 이상에서는 그 형태가 크게 변화하고, 성장온도 700$^{\circ}C$ 이상에서 Au 촉매가 그 기능을 하고 있음을 확인하였다. 성장된 ZnO 나노선은 380 nm에서의 blue emission을 나타냄을 확인하였다.

Keywords

References

  1. V. Srikant and D.R. Clarke, "On the optical band gap of zinc oxide", J. Appl. Phys. 83 (1998) 5447 https://doi.org/10.1063/1.367375
  2. J.T. Hu, T.W. Odom and C.M. Lieber, "Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes", Acc. Chem. Res. 32 (1999) 435 https://doi.org/10.1021/ar9700365
  3. K.S. WeiXenrieder and J. Muller, "Conductivity model for sputtered ZnO-thin film gas sensors", Thin Solid Films. 300 (1997) 30 https://doi.org/10.1016/S0040-6090(96)09471-0
  4. B.J. Jin, S. Im and S.Y. Lee, "Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition", Thin Solid Film. 366 (2000) 107 https://doi.org/10.1016/S0040-6090(00)00746-X
  5. M. Okosh, K. Higashikawa and Hanabusa, "Pulsed laser deposition of ZnO thin films using a femtosecond laser", Appl. Surf. Sci. 154/155 (2000) 424 https://doi.org/10.1016/S0169-4332(99)00392-X
  6. L. Dinh, M.A. Schildback, M. Balooch and W. Mcleam II, "Pulsed laser deposition of ZnO nanocluster films by Cu-vapor laser", J. Appl. Phy. 86 (1999) 1149 https://doi.org/10.1063/1.370857
  7. Y.R. Ryu, S. Zhu, J.M. Wrobel, H.M. Jeong, P.F. Miceli and H.W. White, "Comparative study of textured and epitaxial ZnO "lms", J. Crysy. Growth 216 (2000) 326 https://doi.org/10.1016/S0022-0248(00)00434-6
  8. D.C Reynolds, "Recent advances in ZnO materials and devices", Mat. Sci. Eng. B80 (2001) 383
  9. J. Westwater, D.P. Gosain, S. Tomiya, S. Usui and H. Ruda, "Microelectronics and nanometer structures", J. Vac. Sci. Technol. B 15 (1997) 554
  10. D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G,C. Xiong and S.Q. Feng, "Amorphous silica nanowires: Intensive blue light emitters", Appl. Phys. Lett. 73 (1998) 3076 https://doi.org/10.1063/1.122677
  11. D.P. Yu, Z.G. Bai, Y. Ding, Q.L. Hang, H.Z. Zhang, Y.H. Zou, J.J. Wang, W. Qian, H.T. Zhou, G,C. Xiong and S.Q. Feng, "Nanoscale silicon wires synthesized using simple physical evaporation", Appl. Phys. Lett. 72 (1998) 3458 https://doi.org/10.1063/1.121665
  12. Z.G. Bai, D.P. Yu, et al., "Nano-scale GeO wires synthesized by physical evaporation", Chem. Phys. Lett. 303 (1999) 311 https://doi.org/10.1016/S0009-2614(99)00066-4
  13. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang and S.Q. Feng, "Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach", Appl. Phys. Lett. 78 (2001) 407 https://doi.org/10.1063/1.1342050
  14. C.R. Martin, "Nanomaterials: A membrane-based synthetic approach", Science 266 (1996) 1961
  15. L. Wang, K. Yu-Zhang, A. Metrot, P. Bonhomme and M. Troyon, "TEM study of electrodeposited Ni/Cu multilayers in the form of nanowires", Thin Solid Film 288 (1996) 86 https://doi.org/10.1016/S0040-6090(96)08791-3
  16. S.B. Liu, J. Zhang and W.M. Jiang, "Neutron and pair production by interaction of ultrashort and intense laser pulses with plasmas", Chin. Phy. Lett. 17 (1999) 120
  17. Y.F. Liu, J.H. Zeng, W.X. Zhang et al., "Solvothermal route to $Bi_3Se_4$ nanorods at low temperature", J. Master. Res. 16 (2001) 3361 https://doi.org/10.1557/JMR.2001.0464
  18. Z. Jiang, Y. Xie, J. Lu, et al., "Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by ç-irradiation", Chem. Mater. 13 (2001) 1213 https://doi.org/10.1021/cm0006143
  19. B. Gates, B. Mayers, B. Cattle, et al., "Synthesis and characterization of uniform nanowires of trigonal selenium", Adv. Funct. Mater. 12 (2002) 219 https://doi.org/10.1002/1616-3028(200203)12:3<219::AID-ADFM219>3.0.CO;2-U
  20. K. Hiruma, T. Katsuyama, K. Ogawa, G.P. Morgan, M. Koguchi and H. Kakibayashi, "Quantum size microcrystals grown using organometallic vapor phase epitaxy", Appl. Phys. Lett. 59 (1991) 431 https://doi.org/10.1063/1.105453
  21. R.S. Wagner and W.C. Ellis. "Vapor-liquid-solid mechanism of single crystal growth", Appl. Phys. Lett. 4 (1964) 89 https://doi.org/10.1063/1.1753975
  22. Y. Wu and P. Yang, "Direct observation of vapor-liquidsolid nanowire growth", J. Am. Chem. Soc. 123 (2001) 3165 https://doi.org/10.1021/ja0059084
  23. N. Fufimura, T. Nishihara, S. Goto, J. Xu and T. Ito, "Control of preferred orientation for ZnOx films: Control of self-texture", J. Crystal. Growth. 130 (1993) 269 https://doi.org/10.1016/0022-0248(93)90861-P
  24. C.J. Lee, T.J. Lee, S.C. Y. Zhang and H.J. Lee, "Field emission from well-aligned zinc oxide nanowires grown at low temperature", Appl. Phys. Lett. 81 (2002) 3648 https://doi.org/10.1063/1.1518810
  25. D. C. Reynolds, C.W. Litton and T. C. Collins, "Electroreflectance at a semiconductor-electrolyte interface", Phys. Rev. 140 (1965) A17
  26. B. Lewis and J.C. Anderson, "Nucleation and growth of thin films", Academic Press, New York (1978) 5
  27. H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer", Appl. Phys. Lett. 48 (1986) 353 https://doi.org/10.1063/1.96549
  28. F.A. Ponce, J.S. Major, W.E. Plano and D.F. Welch, "Crystalline structure of AlGaN epitaxy on sapphire using AlN buffer layers", Appl. Phys. Lett. 65 (1994) 2302 https://doi.org/10.1063/1.112724
  29. H. Amano and I. Akasaki, "Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer", Jpn. J. Appl. Phys. 29 (1990) L205 https://doi.org/10.1143/JJAP.29.L205
  30. K. Vanheusden, W.L. Warren, C.H. Seager, D.K. Tallant, J.A. Voigt and B.E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders", J. Appl. Phys. Lett. 79 (1996) 7983
  31. Z.L. Wang and J. Phys. "Zinc oxide nanostructures: Growth, properties and Applications", 16 (2004) R829