Effects of $\beta$-Mercaptoethanol and Hydrogen Peroxide on Enzymatic Conversion of Human Proinsulin to Insulin

  • Son, Young-Jin (Interdisciplinary Program for Bioengineering, Seoul National University) ;
  • Kim, Chang-Kyu (CKDBiO Research Institute, CKDBiO) ;
  • Choi, Byoung-Taek (CKDBiO Research Institute, CKDBiO) ;
  • Park, Yong-Cheol (Center for Agricultural Biomaterials, Seoul National University) ;
  • Seo, Jin-Ho (Interdisciplinary Program for Bioengineering, Seoul National University)
  • Published : 2008.05.31

Abstract

Human insulin is a hormone well-known to regulate the blood glucose level. Recombinant preproinsulin, a precursor of authentic insulin, is typically produced in E. coli as an inactive inclusion body, the solubilization of which needs the addition of reducing agents such as $\beta$-mercaptoethanol. To make authentic insulin, recombinant preproinsulin is modified enzymatically by trypsin and carboxypeptidase B. The effects of $\beta$-mercaptoethanol on the formation of human insulin derivatives were investigated in the enzymatic modification by using commercially available human proinsulin as a substrate. Addition of 1 mM $\beta$-mercaptoethanol induced the formation of various insulin derivatives. Among them, the second major one, impurity 3, was found to be identical to the insulin B chain fragment from $Phe_1$ to $Glu_{21}$. Minimization of the formation of insulin derivatives and concomitant improvement of the production yield of human insulin were achieved by the addition of hydrogen peroxide. Hydrogen peroxide bound with $\beta$-mercaptoethanol and thereby reduced the negative effects of $\beta$-mercaptoethanol considerably. Elimination of the impurity 3 and other derivatives by the addition of over 10 mM hydrogen peroxide in the presence of $\beta$-mercaptoethanolled to a 1.3-fold increase in the recovery efficiency of insulin, compared with those for the case without hydrogen peroxide. The positive effects of hydrogen peroxide were also confirmed with recombinant human preproinsulin expressed in recombinant E. coli as an inclusion body.

Keywords

References

  1. Castellanos-Serra, L. R., E. Hardy, R. Ubieta, N. S. Vispo, C. Fernandez, V. Besada, V. Falcon, M. Gonzalez, A. Santos, G. Perez, A. Silva, and L. Herrera. 1996. Expression and folding of an interleukin-2-proinsulin fusion protein and its conversion into insulin by a single step enzymatic removal of the C-peptide and the N-terminal fused sequence. FEBS Lett. 378: 171-176 https://doi.org/10.1016/0014-5793(95)01437-3
  2. Chen, J. Q., H. T. Zhang, M. H. Hu, and J. G. Tang. 1995. Production of human insulin in an Escherichia coli system with Met-Lys-human proinsulin as the expressed precursor. Appl. Biochem. Biotechnol. 55: 5-15 https://doi.org/10.1007/BF02788744
  3. Fischer, B., I. Sumner, and P. Goodenough. 1993. Isolation, renaturation, and formation of disulfide bonds of eukaryotic proteins expressed in Escherichia coli as inclusion bodies. Biotechnol. Bioeng. 41: 3-13 https://doi.org/10.1002/bit.260410103
  4. Jonasson, P., J. Nilsson, E. Samuelsson, T. Moks, S. Stahl, and M. Uhlen. 1996. Single-step trypsin cleavage of a fusion protein to obtain human insulin and its C peptide. Eur. J. Biochem. 236: 656-661 https://doi.org/10.1111/j.1432-1033.1996.00656.x
  5. Kemmler, W., J. D. Peterson, and D. F. Steiner. 1971. Studies on conversion of proinsulin to insulin. 1. Conversion in vitro with trypsin and carboxypeptidase B. J. Biol. Chem. 246: 6786-6791
  6. Kim, S. G., J. A. Kim, H. A. Yu, D. H. Lee, D. H. Kweon, and J. H. Seo. 2006. Application of poly-arginine fused minichaperone to renaturation of cyclodextrin glycosyltransferase expressed in recombinant Escherichia coli. Enzyme Microb. Technol. 39: 459-465 https://doi.org/10.1016/j.enzmictec.2005.11.044
  7. Klyushnichenko, V. E., D. M. Koulich, S. A. Yakimov, K. V. Maltsev, G. A. Grishina, I. V. Nazimov, and A. N. Wulfson. 1994. Recombinant human insulin: III. High-performance liquid chromatography and high-performance capillary electrophoresis control in the analysis of step-by-step production of recombinant human insulin. J. Chromatogr. A 661: 83-92 https://doi.org/10.1016/0021-9673(94)85179-4
  8. Koo, T. Y. and T. H. Park. 2007. Expression of recombinant human growth hormone in a soluble form in Escherichia coli by slowing down the protein synthesis rate. J. Microbiol. Biotechnol. 17: 579-585
  9. Ladisch, M. R. and K. L. Kohlmann. 1992. Recombinant human insulin. Biotechnol. Prog. 8: 469-478 https://doi.org/10.1021/bp00018a001
  10. Lim, H. K., S. U. Lee, S. I. Chung, K. H. Jung, and J. H. Seo. 2004. Induction of the T7 promoter using lactose for production of recombinant plasminogen kringle 1-3 in Escherichia coli. J. Microbiol. Biotechnol. 14: 225-230
  11. Linde, S., B. S. Welinder, and J. H. Nielsen. 1993. Analysis of proinsulin and its conversion products by reversed-phase highperformance liquid chromatography. J. Chromatogr. B 614: 185-204 https://doi.org/10.1016/0378-4347(93)80309-R
  12. Lukacsovich, T., G. Baliko, A. Orosz, E. Balla, and P. Venetianer. 1990. New approaches to increase the expression and stability of cloned foreign genes in Escherichia coli. J. Biotechnol. 13: 243-250 https://doi.org/10.1016/0168-1656(90)90072-J
  13. Mergulhao, F. J. M. and G. A. Monteiro. 2007. Analysis of factors affecting the periplasmic productiion of recombinant proteins in Escherichia coli. J. Microbiol. Biotechnol. 17: 1236-1241
  14. Middelberg, A. P. J. 2002. Preparative protein refolding. Trends Biotechnol. 20: 437-443 https://doi.org/10.1016/S0167-7799(02)02047-4
  15. Nielsen, R. G., G. S. Sittampalam, and E. C. Rickard. 1989. Capillary zone electrophoresis of insulin and growth-hormone. Anal. Biochem. 177: 20-26 https://doi.org/10.1016/0003-2697(89)90006-7
  16. Phue, J. N., S. J. Oh, Y. J. Son, Y. I. Kim, K. H. Kim, J. W. Kim, C. I. Hong, I. S. Chung, and T. R. Hahn. 2000. Improved refolding of recombinant human proinsulin from Escherichia coli in a two-stage reactor system. J. Microbiol. Biotechnol. 10: 75-80
  17. Son, Y. J., K. H. Park, S. Y. Lee, S. J. Oh, C. K. Kim, B. T. Choi, Y. C. Park, and J. H. Seo. 2007. Effects of temperature shift strategies on production of human preproinsulin in fed-batch fermentation of recombinant Escherichia coli. Biotechnol. Bioprocess Eng. [In Press] https://doi.org/10.1007/BF02931354
  18. Song, J. H., J. S. Won, Y. C. Lee, and M. H. Choe. 2006. Increase refolding yield of disulfide bond bridged fab-toxin homodimers by the insertion of CH3 domains. J. Microbiol. Biotechnol. 16: 1104-1110
  19. Winter, J., H. Lilie, and R. Rudolph. 2002. Renaturation of human proinsulin - a study on refolding and conversion to insulin. Anal. Biochem. 310: 148-155 https://doi.org/10.1016/S0003-2697(02)00287-7
  20. Yon, J. M. and J. M. Betton. 1991. Protein folding in vitro and in the cellular environment. Biol. Cell 71: 17-23 https://doi.org/10.1016/0248-4900(91)90047-Q