DOI QR코드

DOI QR Code

Photoelectrochemical Degradation of Perchlorate Ions by TiO2

산화티탄의 광전기화학 특성을 이용한 퍼클로레이트 이온 제거

  • Min, Hyung-Seob (Materials Science and Technology Research Division Korea Institute of Science and Technology) ;
  • Lee, Jeon-Kook (Materials Science and Technology Research Division Korea Institute of Science and Technology)
  • 민형섭 (재료기술 연구본부 한국과학기술연구원) ;
  • 이전국 (재료기술 연구본부 한국과학기술연구원)
  • Published : 2008.08.31

Abstract

Titanium oxide films and powders are attached onto carbon cloths via RF reactive sputtering and an epoxy resin mixture, respectively. $TiO_2$/carbon composite materials were used to investigate the photoelectrochemical degradation of perchlorate ions in water. The energy band gaps of the RF-sputtered $TiO_2$ thin films ranged from 3.35-3.44 eV. A photocurrent of the powdered $TiO_2$ as illuminated by ultra-violet light for 30 min. was $2.79\;mA/cm^2$. Perchlorate ions in water were shown to be degradable by a UV-illuminated $TiO_2$ powder/carbon/Nafion/carbon composite.

Keywords

References

  1. B. Gu, Y. -K. Ku, and G. M. Brown, Environ. Sci. Technol., 39, 901 (2005) https://doi.org/10.1021/es049121f
  2. B. E. Logan and D. Lapoint, Water Research, 36, 3647 (2002) https://doi.org/10.1016/S0043-1354(02)00049-0
  3. J. Xu, J. J. Trimble, L. Steinberg and B. E.Logan, Water Research, 38, 673 (2004) https://doi.org/10.1016/j.watres.2003.10.017
  4. X. Yu, C. Amrhein and M. R. Matsumoto, Environ. Sci. Technol., 40, 1328 (2006) https://doi.org/10.1021/es051682z
  5. B. Fayyaz, A. Hrale, B. Park, P. Liu, M. Sahimi and T. T. Tsotsis, Ind. Eng. Chem. Res., 44, 9398 (2005) https://doi.org/10.1021/ie050199u
  6. O. Bicondoa, C. L. Pang, R. Ithnin, H. Onishi and G. Thornton, Nature Materials, 5, 189 (2006) https://doi.org/10.1038/nmat1592
  7. O. Carp, C. L. Huisman and A. Reller, Prog. in Sol. State Chem., 32, 33 (2004) https://doi.org/10.1016/j.progsolidstchem.2004.08.001
  8. J. Rodriguez, M. Gomez, S. -E. Lindquist and C. G. Granqvist, Thin Solid Films, 360, 250 (2000) https://doi.org/10.1016/S0040-6090(99)01080-9
  9. R. Yuan, R. Guan, W. Shen and J. Zheng, J. Coll. Interf. Sci., 282, 87 (2005) https://doi.org/10.1016/j.jcis.2004.08.143
  10. R. Yuan, R. Guan, P. Liu, J. Zheng, Colloids and Surfacees A : Phsicochem. Eng. Aspects, 293, 80 (2007) https://doi.org/10.1016/j.colsurfa.2006.07.010
  11. K. Hashimoto, H. Irie, and A. Fujishima, Jpn. J. Appl. Phys., 44(12), 8269 (2005) https://doi.org/10.1143/JJAP.44.8269
  12. H. Park and W. Choi, J. Phys. Chem., B109, 11667 (2005) https://doi.org/10.1021/jp051222s
  13. A. Brudnik, A. Gorzkowska-Sobas and E. Pamuta, J. Power Sources, 173, 774 (2007) https://doi.org/10.1016/j.jpowsour.2007.05.084
  14. T. Sreethawong, Y. Suzuki and S. Yoshikawa, International J. Hydrogen Energy, 30, 1053 (2005) https://doi.org/10.1016/j.ijhydene.2004.09.007
  15. S. U. M. Khan, M. Al-Shahry and W. B. Ingler Jr., Science, 297, 2243 (2002) https://doi.org/10.1126/science.1075035
  16. M. Radecka, A. Trenczek-Zajac, K. Zakrzewska and M. Rekas, J. Power Source, 173, 816 (2007) https://doi.org/10.1016/j.jpowsour.2007.05.065