Preparation of Nanoporous Ceramic Membranes by Sol-gel Method and Characterization of Gas Permeation

졸-겔법에 의한 나노기공성 세라믹 막의 제조 및 기체투과 특성

  • Lee, Yong-Taek (Green Energy Center, College of Environment and Applied chemistry Department of Chemical Engineering, Kyung Hee University) ;
  • Choi, Ga-Young (Green Energy Center, College of Environment and Applied chemistry Department of Chemical Engineering, Kyung Hee University) ;
  • Han, Hyuk-Hee (Green Energy Center, College of Environment and Applied chemistry Department of Chemical Engineering, Kyung Hee University)
  • 이용택 (경희대학교 환경.응용화학대학 화학공학과) ;
  • 최가영 (경희대학교 환경.응용화학대학 화학공학과) ;
  • 한혁희 (경희대학교 환경.응용화학대학 화학공학과)
  • Published : 2008.06.30

Abstract

Nano-porous ceramic membranes was synthesized by the sol-gel method. Gas permeation of hydrogen and nitrogen was determined by single composition gas. Pore size $0.1{\mu}m$ and porosity 32% of flat type ${\alpha}-Al_2O_3$ substrate was manufactured. An intermediate ${\gamma}-Al_2O_3$ layer with pore size of 4 nm was formed by dip-coating. Polymeric silica sol was synthesized by acid catalyzed hydrolysis and condensation of tetra-ethyl-ortho-silicate. Supported membranes on alumina were prepared by dipping and calcining. He, $N_2$ permeation experiments with nanoporous sol-gel modified supported ceramic membranes were peformed to determine the gas transport characteristics. $He/N_2$ permselectivity around $100{\sim}160$ and helium permeation in the order of $10^{-7}mol/m^2{\cdot}s{\cdot}Pa$ were measured in the temperature range of $303{\sim}363K$.

본 연구에서 졸-겔 방법에 의하여 나노 기공을 가지는 세라믹막을 제조하여 단일 조성의 헬륨과 질소를 가지고 기체투과 실험을 수행하였다. 기공 크기 $0.1{\mu}m$, 기공율 32%의 평막형 ${\alpha}-Al_2O_3$ 지지체를 제조하였으며, 지지체를 담지하여 코팅하는 방법으로 4nm의 기공 크기를 가지는 ${\gamma}-Al_2O_3$ 중간층을 제조하였다. 실리카 졸은 TEOS의 산 촉매 가수분해와 축중합반응을 통하여 합성하였다. 막은 딥코팅과 소결과정을 거쳐 제조되었다. 졸-겔 법에 의해 합성된 세라믹 막을 통한 헬륨, 질소 투과 실험은 기체의 투과 특성을 파악하기 위하여 시행하였다. 질소에 대한 헬륨의 선택도는 $100{\sim}160$ 정도였으며 헬륨의 투과도는 $303{\sim}363K$의 온도 범위에서 $10^{-7}mol/m^2{\cdot}s{\cdot}Pa$ 정도였다.

Keywords

References

  1. A. J. Burgraaf and L. Cot, 'Fundamentals of inorganic membrane science and technology', Elsevier, Amsterdam (1996)
  2. K. Yoshida, Y. Hirano, H. Fuji, T. Tsuru, and M. Asaeda, 'Hydrothermal stability and performance of silica-zirconia membranes for hydrogen separation in hydrothermal conditions', J. Chem. Eng. Jpn., 34, 523 (2001) https://doi.org/10.1252/jcej.34.523
  3. Y. Yoshino, T. Suzuki, B. N. Nair, H. Taguchi, and N. Itoh, 'Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature', J. Membr. Sci., 267, 8 (2005) https://doi.org/10.1016/j.memsci.2005.05.020
  4. J. C. S. Wu, H. Sabol, G. W. Smith, D. L. Flowers, and P. K. T. Liu, 'Characterization of hydrogen permselective microporous ceramic membranes', J. Membr. Sci., 96, 275 (1994) https://doi.org/10.1016/0376-7388(94)00139-1
  5. B. K. Sea, M. Watanabe, K. Kusakabe, S. Morooka, and S. S. Kim, 'Formation of hydrogen permselective silica membrane for elevated temperature hydrogen recovery from a mixture containing steam', Gas Sep. Purif. 10, 187 (1996) https://doi.org/10.1016/0950-4214(96)00020-5
  6. S. Gopalakrishnan, Y. Toshino, M. Nomura, B. N. Nair, and S.-I. Nakao, 'A hybrid processing method for high performance hydrogen-selective silica membranes', J. Membr. Sci., 297, 5 (2007) https://doi.org/10.1016/j.memsci.2007.03.034
  7. A. Julbe, C. Guizard, A. Larbot, L. Cat, and A. Giroir-Frendler, 'The sol-gel approach to prepare candidate microporous inorganic membranes for membrane reactors', J. Membr. Sci., 77, 137 (1993) https://doi.org/10.1016/0376-7388(93)85065-5
  8. R. J. R Uhlhorn, K. Keizer, and A. J. Burggraaf, 'Gas transport and separation with ceramic membrane. Part I and II', J. Membr. Sci., 66, 259 (1992) https://doi.org/10.1016/0376-7388(92)87016-Q
  9. B. N. Nair, T. Yamaguchi, T. Okubo, H. Suematsu, K. Keizer, and S.-I. Nakao, 'Sol-gel synthesis of molecular sieving silica membranes', J. Membr. Sci., 135, 237 (1997) https://doi.org/10.1016/S0376-7388(97)00137-3
  10. M. Tsapatsis and G. Gavalas, 'Structure and aging characteristics of $H_2$ permselective $SiO_2$ vycor membranes', J. Membr. Sci., 87, 281 (1994) https://doi.org/10.1016/0376-7388(94)87034-9
  11. N. Das and H. S. Maiti, 'Formatation of pore structure in tape-cast alumina membranes?effects of binder content and firing temperature', J. Membr. Sci., 140, 205 (1998) https://doi.org/10.1016/S0376-7388(97)00282-2
  12. C.-H. Chang, 'Thermal and hydrothermal stability and its improvement of nano-structure ceramic membranes', Doctor's Thesis University of Cincinnati (1993)
  13. 作花済夫 ゾル-ゲル法の科学(機能性ガラスおよびセラミックスの低温合成)アグネ承風社 (1988)
  14. K.-H. Lee, B. Sea, and D.-W. Lee, 'Microstructure and pore size control of silica membrane for gas separation at elevated temperatures', Membrane Journal, 7, 42 (2005)
  15. M. Pakizeh, M. R. Omidkhah, and A. Zarringhalam, 'Study of mass transfer through new templated silica membranes prepared by sol-gel method', Int. J. Hydrogen Energy, 32(12), 2032 (2007) https://doi.org/10.1016/j.ijhydene.2006.10.004
  16. D. Lee and S. T. Oyama, 'Gas permeation characteristics of a hydrogen selective supported silica membrane', J. Membr. Sci., 210, 291 (2002) https://doi.org/10.1016/S0376-7388(02)00389-7
  17. R. R. Bhave, Inorganic Membranes: Synthesis, Characteristics and Applications, Van Nostrand Reinhold, New York (1991)
  18. E. S. Kikkinides, K. A. Stoitsas, and V. T. Zaspalis, 'Correlation of structural and permeation properties in sol-gel made nano-porous membranes', J. Colloid and Int. Sci., 259, 322 (2003) https://doi.org/10.1016/S0021-9797(02)00210-2