Analysis of the Lower Trophic Level of the Northern East China Sea Ecosystem based on the NEMURO Model

북부 동중국해 생태계의 NEMURO모델에 의한 하위생태계 분석

  • Lee, Jong-Hee (Department of Marine Production Management, Pukyong National University) ;
  • Zhang, Chang-Ik (Department of Marine Production Management, Pukyong National University)
  • 이종희 (부경대학교 해양생산관리학과) ;
  • 장창익 (부경대학교 해양생산관리학과)
  • Published : 2008.02.29

Abstract

The NEMURO model is aimed to efficiently understand the interaction among factors of lower trophic level of a marine ecosystem, using data on solar radiation and sea water temperature. In this study, we analyzed the seasonal pattern of nutrients and planktons, and estimated productivity and biomass of planktons from 2002 to 2005. Nutrients($NO_3$, $NH_4$, and $Si(OH)_4$) which were used by phytoplankton showed a high concentration before the bloom of phytoplankton. Nutrients (DON, PON, and Opal) which were a byproduct of phytoplankton showed a high concentration in the same period as the bloom of phytoplankton. Both phytoplankton and zooplankton had two peaks in March and August. Estimated phytoplankton biomass from the NEMURO model showed a similar pattern with observed chlorophyll a concentrations. Biomasses of phytoplankton were bigger than those of zooplankton. Annual mean biomasses of small and large phytoplankton were estimated at 30.961 and $14.070\;{\mu}g\;l^{-1}$ respectively. Annual mean biomass of predatory zooplankton was greater than those of small and large zooplankton.

NEMURO 모델은 태양복사에너지와 표층수온자료를 사용하여 해양의 하위영양단계의 인자들 사이의 상호작용을 효과적으로 이해하기 위하여 개발된 모델이다. 본 연구에서 영양염과 플랑크톤의 계절적 변동을 분석하였으며, 2002년부터 2005년 사이의 플랑크톤 생산량과 생체량을 추정하였다. 모델 내에서 식물플랑크톤이 직접적으로 이용하는 영양염인 $NO_3$, $NH_4$$Si(OH)_4$는 식물플랑크톤의 대번식시기 이전에 높은 농도를 나타내었다. 플랑크톤의 사망이나 배설에 의해 재생되는 영양염인 DON, PON 및 Opal은 플랑크톤의 대번식시기와 동시에 높은 농도를 나타내었다. NEMURO 모델에서 추정된 식물과 동물플랑크톤은 3월과 8월에 높은 생체량을 보인다. 이는 모델이 적용된 지역에서 관측된 chlorophyll a와 유사한 형태를 나타내었다. 식물플랑크톤의 생체량은 동물플랑크톤보다 더 컸으며, 포식형 동물플랑크톤의 연평균 생체량은 소형과 대형 동물플랑크톤보다 크게 나타내었다.

Keywords

References

  1. 강영실, 전경암, 1999. 한국 남해 연안전선 생물화학적 특성 및 영양학적 구조. 한국수산학회지. 32: 22-29
  2. 김동선, 조규대, 1998. 수영만의 생태계모델링에 의한 물질분포. 한국환경과학회지 7(6): 817-825
  3. 김용술, 1972. 한국 남해의 동물성 플랑크톤량의 경년 변화에 관한 연구. 한국수산학회지. 5(4): 108-114
  4. 김용술, 1976. 한국 남해의 동물성 플랑크톤 생산량 추정. 한국수산학회지. 9(4): 245-249
  5. 나정렬, 한상규, 조규대, 1990. 한반도 근해의 해류와 해수특성 - 남해연안수 확장과 수온변화. 한국수산학회지. 23: 267-279
  6. 박철, 이창래, 김정창, 1998. 동해전선역 동물플랑크톤 군집: 2. 수온 분포와의 관계. 한국수산학회지. 31: 749-759
  7. 서호영, 최상덕, 2004. 진해만에 출현하는 동물플랑크톤의 종조성과 계절별 출현양상. 한국환경생물학회지. 22(1): 43-56
  8. 송재윤, 2002. 2000-2001 전남 광양만에서 후생동물 플랑크톤의 생태 및 진주담치유생의 섭식. 여수대 석사학위 논문
  9. 이원재, 박남주, 노재훈, 이재도, 장풍국, 장만, 신경순, 2004. 광양만에서 식물플랑크톤의 시공간적 변화. 경남대학교 환경문제연구소 환경연구. 27: 105-127
  10. 임월애, 강창근, 김숙양, 이삼근, 김학균, 정익교, 2003. 여름철 남해도 연안 식물플랑크톤 군집 구조의 단기 변화. 한국조류학회지. 18(1): 49-58
  11. Aita, N.M., Y. Yamanaka, and M.J. Kishi, 2003. Effects of ontogenetic vertical migration of zooplankton on annual primary production using NEMURO embedded in a general circulation model. Fisheries Oceanography 12: 284-290 https://doi.org/10.1046/j.1365-2419.2003.00261.x
  12. Aydin, K.Y., G.A. McFarlane, J.R. King, B.A. Megrey, 2003. The BASS/MODEL Report on trophic models of the subarctic Pacific basin ecosystems. North Pacific Marine Science Organization (PICES) Report no.25, 93pp.
  13. Aydin, K.Y., G.A. McFarlane, J.R. King, B.A. Megrey, K.W. Myers, 2005. Linking oceanic food webs to coastal production and growth rates of Pacific salmon (Oncorhynchus spp.), using models on three scales. Deep-Sea Research II 52: 757-780 https://doi.org/10.1016/j.dsr2.2004.12.017
  14. Bundy, A., 2004. Mass balance models of the eastern Scotian Shelf before and after the cod collapse and other ecosystem changes. Canadian Technical Report of Fisheries and Aquatic Sciences No.2520. pp.193
  15. Cheung, W., R. Watson and T. Pitcher, 2002. Policy Simulation of Fisheries in the Hong Kong Marine Ecosystem. Fisheries Centre Research Reports 10(2): 46-53
  16. Cheung, W.L. and T.J. Pitcher, 2005. A Mass-Balance Model of the Falkland Islands Fisheries and Ecosystems. Fisheries Centre Research Reports 13(7): 65-84
  17. Christensen, V. and D. Pauly, 1992. ECOPATH II a software for balancing steady ecosystem models and calculating network characteristics. Ecol. Model. 61: 169-185 https://doi.org/10.1016/0304-3800(92)90016-8
  18. Cox, S.P., T.E. Essington, J.F. Kitchell, S.J.D. Martell, C.J. Walters, C. Boggs, and I. Kaplan, 2002. Reconstructing ecosystem dynamics in the central Pacific Ocean, 1952-1988. II. A preliminary assessment of the trophic impacts of fishing and effects on tuna dynamics. Can. J. Fish. Aquat. Sci. 59: 1736-1747 https://doi.org/10.1139/f02-138
  19. Eppley, R.W., E. Stewart, M.R. Abbott and U. Heyman, 1985. Estimating ocean primary production from satellite chlorophyll. Introduction to regional differences and statistics for the Southern California Bight. J. Plankton Res. 7: 57-70 https://doi.org/10.1093/plankt/7.1.57
  20. Eslinger, D.L., M.B. Kashiwai, M.J. Kishi, B.A. Megrey, D.M. Ware and F.E. Werner, 2002. Model task team workshop report, Final report of the International workshop to develop a prototype lower trophic level ecosystem model for comparison of different marine ecosystems in the North Pacific. 77pp.
  21. Erfan, A. and T.J. Pitcher, 2005. An Ecosystem Simulation Model of the Antarctic Peninsula. Fisheries Centre Research Reports 13(7): 5-20
  22. Franks, P.J.S., 2002. NPZ Models of Plankton Dynamics: Their Construction, Coupling to Physics, and Application. J. Oceanogr. 58: 379-387 https://doi.org/10.1023/A:1015874028196
  23. Fujii, M., Nojiri, Y., Yamanaka, Y., Kishi, M.J., 2002. A one-dimensional ecosystem model applied to time-series Station KNOT. Deep-Sea Research II 49: 5441-5461 https://doi.org/10.1016/S0967-0645(02)00207-2
  24. Harvy, C.J., S.P. Cox, T.E. Essington, S. Hansson, and F. Kitchell, 2003. An ecosystem model of food web and fisheries interactions in the Baltic Sea. ICES Journal of Marine Science, 60: 939-950 https://doi.org/10.1016/S1054-3139(03)00098-5
  25. Hashioka, T. and Y. Yamanaka, 2007. Seasonal and regional variations of phytoplankton groups by top-down and bottom-up controls obtained by a 3D ecosystem model. Ecological Modelling. 202: 68-80 https://doi.org/10.1016/j.ecolmodel.2006.05.038
  26. Ito, S.I., M.J. Kishi, Y. Kurita, Y. Oozeki, Y. Yamanaka, B.A. Megrey and F.E. Werner, 2004. Initial design for a fish bioenergetics model of Pacific saury coupled to a lower trophic ecosystem model. Fish. Oceanogr. 13(Suppl. 1): 111-124
  27. Ito, S., B.A. Megrey, M.J. Kishi, D. Mukai, Y. Kurita, Y. Ueno, and Y. Yamanaka, 2007. On the interannual variability of the growth of Pacific saury (Cololabis saira): a simple 3-box model using NEMURO. FISH. Ecological Modelling. 202: 174-183 https://doi.org/10.1016/j.ecolmodel.2006.07.046
  28. Kishi, M.J., H. Motono, M. Kashiwai and A. Tsuda, 2001. An ecological- physical coupled model with ontogenetic vertical migration of zooplankton in the northweatern Pacific. J. Oceanogr. 57: 499-507 https://doi.org/10.1023/A:1021517129545
  29. Kishi, M.J., T., Okunishi, Y., Yamanaka, 2004. A comparison of simulated particle fluxes using NEMURO and other ecosystem models in the western North Pacific. Journal of Oceanography 60: 63-73 https://doi.org/10.1023/B:JOCE.0000038319.89808.ef
  30. Kishi, M.j., M. Kashiwai, D.M. Ware, B.A. Megrey, D.L. Eslimger, F.E. Werner, M. Noguchi, A.T. Azumaya, M. Fujii, S. Hashimoto, D. Huang, H. Iizum, Y. Ishida, S. Kang, G.A. Kantakov, H. Kim, K. Komatsu, V.V. Navrosky, S.L. Smith, K. Tadokoro, A. Tsuda, O. Yamamura, Y. Yamanaka, K. Yokouchi, N. Yoshie, J. Zhang, Y.I. Zuenko, and V.I. Zvalinsky, 2007. NEMURO - A lower trophic level model for the North Pacific marine ecosystem. Ecological Modelling. 202: 12-25 https://doi.org/10.1016/j.ecolmodel.2006.08.021
  31. Lee, W.J., N.J. Park, J.H. Noh, J.D. Lee, P.G. Jang, M. Chang, and K.S. Shin, 2004. Temporal and Spatial distribution of phytoplankton in Gwangyang Bay. Environmental Research Institute, Kyungnam Univ. 27: 105-127
  32. Lim, W.A., C.K. Kang, S.Y. Kim, S.G. Lee, H.G. Kim, and I.K. Chung, 2003. Short-term Changes of Community Structure of Phytoplankton in Summer Around Namhea Island of Korea. Algae. 18(1): 49-58 https://doi.org/10.4490/ALGAE.2003.18.1.049
  33. Megrey, B.A., K.A. Rose, R. Klumb, D. Hay, F.E. Werner, D.L. Eslinger, and S.L. Smith, 2007. A bioenergetics-based population dynamics model of Pacific herring (Clupea harengus pallasi) coupled to a lower trophic level nutrient-phytoplankton-zooplankton model: Description, calibration, and sensitivity analysis. Ecological Modelling. 202: 144-164 https://doi.org/10.1016/j.ecolmodel.2006.08.020
  34. NFRDI, National Fisheries Research and Development Institute. 2003-2006a. Annual Report of Korean Coastal Environment Monitoring, http://www.nfrdi.re.kr/home/tech/environment/enviro_01.php
  35. NFRDI, National Fisheries Research and Development Institute. 2003-2006b. Annual report of oceanographic observations
  36. Parsons, T.R., M. Takahashi, and B. Hargrave, 1984. Biological Oceanographic Processes-3rd ed., Pergamon press, 330pp
  37. Pauly, D., and V. Christensen, 1993. Large Marine Ecosystems: Stress, Mitigation, and Sustainability - Stratified models of large marine ecosystems: a general approach and an application to the South China Sea. Blackwell Science. 148-174
  38. Polovina, J.J., 1984. Model of a coral reef ecosystem. Part I. The ECOPATH application and its application to French Shoals. Coral Reefs, 3: 1-11 https://doi.org/10.1007/BF00306135
  39. Rose, K.A., B.A. Megrey, F.E. Werner, and D.M. Ware, 2007. Calibration of the NEMURO Nutrient-Phytoplankton-Zooplankton Food Web Model to a Coastal Ecosystem : Evaluation of an automated calibration approach. Ecological modelling. 202: 38-51 https://doi.org/10.1016/j.ecolmodel.2006.08.016
  40. Shim, J.H. and K.S. Yoon, 1989. Biomass of primary producer in the Chnsu Bay: Relationships between phytoplankton carbon, cell number and chlorophyll. The Journal of the Oceanological Society of Korea. 24(4): 194-205
  41. Soh, H.Y. and H.L. Suh, 1993. Seasonal fluctuation of the abundance of the planktonic copepods in Kwangyang Bay. Korean J. Environ. Biol. 11(1): 26-34
  42. Stead, T.K., J.M. Schmid-Araya, and A.G. Hildrew, 2005. Secondary production of a stream metazoan community: Does the meiofauna make a difference? Limnol. Oceanogr., 50(1): 398-403 https://doi.org/10.4319/lo.2005.50.1.0398
  43. Trites, A.W., P.A. Livingston, M.C. Vasconcellos, S. Mackinson, A.M. Springer, and D. Pauly, 1997. Ecosystem change and the decline of marine mammals in the Eastern Bering Sea: testing the ecosystem shift and commercial whaling hypotheses. Fisheries Centre Research Reports 7. pp.100
  44. Yamanaka, Y., N. Yoshie, M. Fuijii, M. Aita-Noguchi, and M.J. Kishi, 2004. An ecosystem model coupled with nitrogen-silicon-carbon cycles applied to station A7 in the northwest Pacific. Journal of Oceanography 60: 227-241 https://doi.org/10.1023/B:JOCE.0000038329.91976.7d
  45. Yang, H.S. and S.S. Kim, 1990. A study on sea water and ocean current in the sea adjacent to Korea peninsula. Bull. Korean Fish. Soc., 23: 417-424
  46. Yoshie, N., Y. Yamanaka, M.J. Kishi, H. Saito, 2003. One dimensional ecosystem model simulation of the effects of vertical dilution by the winter mixing on the spring diatom bloom. Journal of Oceanography 59: 563-571 https://doi.org/10.1023/B:JOCE.0000009586.02554.d3
  47. Zhang, C.I. and S.C. Yoon, 2003. Effects of Climatic Regime Shift on the Structure of Marine Ecosystem in the Southweatern East Sea during the 1970s. J. Kor. Fish. Soc., 36(4): 389-401