Benthic Environments and Macrobenthic Polychaete Community Structure in the winter of 2005-2006 in Gamak Bay, Korea

가막만의 2005년과 2006년 동계 저서환경 및 대형저서다모류군집구조

  • Yoon, Sang-Pil (Marine Environment Research Team, National Fisheries Research & Development Institute (NFRDI)) ;
  • Kim, Youn-Jung (Marine Environment Research Team, National Fisheries Research & Development Institute (NFRDI)) ;
  • Jung, Rae-Hong (Marine Environment Research Team, National Fisheries Research & Development Institute (NFRDI)) ;
  • Moon, Chang-Ho (Department of Oceanography, Pukyong National University) ;
  • Hong, Sok-Jin (Marine Environment Research Team, National Fisheries Research & Development Institute (NFRDI)) ;
  • Lee, Won-Chan (Marine Environment Research Team, National Fisheries Research & Development Institute (NFRDI)) ;
  • Park, Jong-Soo (Marine Environment Research Team, National Fisheries Research & Development Institute (NFRDI))
  • 윤상필 (국립수산과학원 환경연구팀) ;
  • 김연정 (국립수산과학원 환경연구팀) ;
  • 정래홍 (국립수산과학원 환경연구팀) ;
  • 문창호 (부경대학교 해양학과) ;
  • 홍석진 (국립수산과학원 환경연구팀) ;
  • 이원찬 (국립수산과학원 환경연구팀) ;
  • 박종수 (국립수산과학원 환경연구팀)
  • Published : 2008.02.29

Abstract

This study was performed to investigate changes in benthic environment and macrobenthic polychaete communities in Gamak Bay where various environmental quality improvement projects have been implemented in recent years. Field surveys were carried out in February, 2005 and February, 2006 and twenty stations were selected to explore whether or not there were between-year differences in biotic and abiotic variables. Of 10 environmental variables measured, only three variables including dissolved oxygen (DO), total ignition loss (IL), acid volatile sulfide (AVS) showed significant between-year differences. Specifically, IL and AVS were, on average, 1.5 and 3 times lower in 2006 compared to those in 2005, respectively, which was more pronounced in the northern part of the bay. A total of 95 polychaete species was sampled from the two sampling occasions. Between-year differences in the number of species, abundance, and diversity were varied from place to place. In the northern part of the bay, fewer species were found in 2006 rather than in 2005, but diversity increased in 2006 due to the reduction in dominance of a few species. On the contrary, in the central part of the bay, the number of species, abundance and diversity prominently increased in 2006. In the southern part of the bay, all the biological indices maintained similarly during the two years. Dominant species in 2005 were such opportunistic or organic pollution indicator species as Lumbrineris longifolia, Capitella capitata, Mediomastus californiensis, Pseudopolydora paucibranchiata, etc. and most of them were mainly distributed in the northern part of the bay and in the proximity of it. In 2006, however, Euchone alicaudata, L. longifolia, Paraprionospio pinnata, Flabelligeridae sp., etc. were dominant and distributed mainly in the central part of the bay. Multivariate analyses showed that the whole polychaete community could be divided into 5 groups reflecting the geographical positions of the sampling stations and temporal variation particularly in the northern part of the bay. According to the results of BIO-ENV procedure, TOC (${\rho}=0.52$) and AVS (${\rho}=0.49$) as a single variable best explained the polychaete community structure. The best combination was made by such variables as TOC, AVS, sorting coefficient, and water temperature (${\rho}=0.60$). In conclusion, between-year differences in biotic and abiotic variables imply that recent efforts for the environmental improvement produced positive influences on the benthic environment of Gamak Bay, particularly the northern part of the bay.

본 연구는 최근 활발한 환경개선사업이 이루어지고 있는 가막만에서 저서환경과 대형다모류 군집구조의 변화 양상을 알아보기 위해 수행되었다. 현장 조사는 2005년 2월과 2006년 2월 두 차례에 걸쳐 수행되었으며 생물학적, 무생물학적 변수들을 측정하고 상호 비교하였다. 측정된 총 10개의 환경변수 가운데 연간 차이가 유의하였던 변수는 용존산소(DO), 강열감량(IL), 그리고 산휘발성황화물(AVS)이었다. 특히, 강열감량은 2005년에 비해 2006년에 1.5배, 산 휘발성황화물은 3배 낮았으며 이러한 현상은 북부내만역에서 더욱 뚜렷하였다. 저서다모류는 두 번의 조사에서 총 95종이 채집되었다. 출현종수, 개체 밀도, 그리고 다양도의 연도 간 변화 양상은 만 내의 위치에 따라 다르게 나타났다. 북부내만역에서는 2005년 보다 오히려 2006년에 더 적은 수의 다모류가 채집되었지만 일부 우점종의 우점도가 2006년에 현저히 감소함으로써 다양도는 증가하였다. 반면, 만의 중부역에서는 출현종수, 개체 밀도, 그리고 다양도가 2006년에 모두 증가하였다. 만의 입구역에서는 이러한 변수들의 시간에 따른 변화가 상대적으로 적었다. 2005년의 우점종은 기회종 또는 유기물 오염지표종으로 알려진 Lumbrineris longifolia, Capitella capitata, Mediomastus californiensis, Pseudopolydora paucibranchiata 등으로 주로 북부내만역에 분포하였다. 한편, 2006년에는 Euchone alicaudata, L. longifolia, Paraprionospio pinnata, Flabelligeridae sp. 등이 우점하였으며 주로 만 중앙부에 분포하는 종들이 많았다. 전체자료에 대한 다변량 분석 결과, 저서다모류군집은 크게 5개의 그룹으로 나뉘었으며 이는 채집 정점의 지리적 위치 그리고 북부내만역 정점들에서 관찰된 2005년과 2006년 사이의 변화가 반영된 결과였다. BIO-ENV 분석을 통해 저서다모류군집의 시 공간적 구조 변화와 연관성이 가장 높은 환경변수를 알아본 결과, 단일변수로는 총유기탄소(TOC; ${\rho}=0.52$), 산휘발성황화물(${\rho}=0.49$) 등이 있었으며 최종적으로 총유기탄소, 산휘발성황화물, 분급도, 그리고 수온의 조합(${\rho}=0.60$)이 가장 높은 상관성을 나타내었다. 결론적으로 가막만의 저서환경 및 저서다모류군집에 대한 연간 비교 결과는 최근의 집중적인 환경개선 노력이 만 전반에 걸쳐 그리고 특히 북부내만역에 긍정적인 영향을 주고 있음을 암시하였다.

Keywords

References

  1. 김정배, 이상용, 유준, 최양호, 정창수, 이필용, 2006. 가막만 빈산소 수괴의 특성. 한국해양환경공학회지, 9(4): 216-224
  2. 노일현, 윤양호, 김대일, 박종식, 2006. 가막만 표층퇴적물중 유기 물량의 시공간적 분포 특성. 한국해양환경공학회지, 9(1): 1-13
  3. 박용안, 1984. 광양만의 퇴적환경에 관한 연구. 한국해양학회지, 19(1): 82-88
  4. 신현출, 1995. 가막만의 저서다모류군집. 한국해양학회지, 30(4): 250-261
  5. 윤상필, 정래홍, 김연정, 김성수, 이재성, 박종수, 이원찬, 최우정, 2007. 가막만의 저서환경과 다모류군집 특성. 한국해양학회지-바다, 12(4): 287-304
  6. 이규형, 1992. 가막만의 해수유동 패턴. 한국어업기술학회지, 28(2): 117-131
  7. 이규형, 조규대, 1990. 가막만의 수온과 염분의 분포. 한국수산학회지, 23(1): 25-39
  8. 이연규, 황진연, 정규귀, 1995. 가막만 표층퇴적물 특성 및 점토 광물. 한국지구과학회지, 16(6): 477-488
  9. 해양수산부, 2001. 환경관리해역 시범해역관리 시행계획 수립연구 -가막만 환경보전해역 관리시행계획(안)
  10. 해양수산부, 2005. 해양환경공정시험방법. 389pp.
  11. Belan, T.A., 2003. Benthos abundance pattern and species composition in conditions of pollution in Amursky Bay (the Peter the Great Bay, the Sea of Japan). Mar. Pollut. Bull., 46: 1111-1119 https://doi.org/10.1016/S0025-326X(03)00242-X
  12. Beukema, J.J., 1991. Changes in composition of bottom fauna of a tidal-flat area during a period of eutrophication. Mar. Biol., 111: 293-301 https://doi.org/10.1007/BF01319712
  13. Borja, A., I. Muxika and J. Franco, 2006. Long-term recovery of soft-bottom benthos following urban and industrial sewage treatment in the Nervin estuary (southern Bay of Biscay). Mar. Ecol. Prog. Ser., 313: 43-55 https://doi.org/10.3354/meps313043
  14. Brown, J.R., R.J. Gowen and D.S. McLusky, 1987. The effect of salmon farming on the benthos of a Scottish sea loch. J. Mar. Biol. Ecol., 109: 39-51 https://doi.org/10.1016/0022-0981(87)90184-5
  15. Clarke, K.R. and M. Ainsworth, 1993. A method for linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser., 92: 205-209 https://doi.org/10.3354/meps092205
  16. Clarke, K.R. and R.M. Warwick, 1994. Changes in marine communities: an approach to statistical analysis and interpretation, Natural Environment Research Council, Plymouth Marine Laboratory, UK, 144 pp
  17. Folk, R.L. and W.C. Ward, 1957. Brazos river bar: A study in the significance of grain size parameter. J. Sediment. Petrol., 27: 3-26 https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  18. Gowen, R.J. and N.B. Bradbury, 1987. The ecological impact of salmonid farming in coastal waters: a review. Oceanogra. Mar. Biol. Annu. Rev., 25: 563-533
  19. Gray, J.S., R.S. Wu and Y.Y. Or, 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Mar. Ecol. Prog. Ser., 238: 249-279 https://doi.org/10.3354/meps238249
  20. Ingram, R.L., 1971. Sieve analysis. In: Procedures in sedimentary petrology, edited by Carver, R.E., Willey-Inter Science. pp. 49-67
  21. Karakassis, I., E. Hatziyanni, M. Tsapakis, and W. Plaiti, 1999. Benthic recovery following cessation of fish farming: a series of successes and catastrophes. Mar. Ecol. Prog. Ser., 184: 205-218 https://doi.org/10.3354/meps184205
  22. Koo, B.J., J.G. Je and S.H. Shin, 2004. Benthic pollution assessment based on macrobenthic community structure in Gamak Bay, southern coast of Korea. Ocean and Polar Res., 26(1): 11-22 https://doi.org/10.4217/OPR.2004.26.1.011
  23. Kraufvelin P., B. Sinisalo, E. Leppkoski, J. Mattila and E. Bonsdorff, 2001. Changes in zoobenthic community structure after pollution abatement from fish farms in the Archipelago Sea (N. Baltic Sea). Mar. Environ. Res., 51: 229-245 https://doi.org/10.1016/S0141-1136(00)00101-X
  24. Lambshead, P.J.D., H.M. Platt and K.M. Shaw, 1983. The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J. Nat. Hist., 17: 859-874 https://doi.org/10.1080/00222938300770671
  25. Munari, C., S. Modugno, F. Ghion, G. Castaldelli, E.A. Fano, R. Rossi and M. Mistri, 2003. Recovery of the macrobenthic community in the Valli di Comacchio, northern Adriatic Sea, Italy. Oceanol. Acta, 26: 67-75 https://doi.org/10.1016/S0399-1784(02)01231-8
  26. Pearson, T.H. and R. Rosenberg, 1978. Macrobenthic succession inrelation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev., 16: 229-311
  27. Pereira P.M.F., K.D. Black, D.S. McLusky and T.D. Nickell, 2004. Recovery of sediments after cessation of marine fish farm production. Aquaculture, 235: 315-330 https://doi.org/10.1016/j.aquaculture.2003.12.023
  28. Rosenberg, R., 1976. Benthic faunal dynamics during succession following pollution abatement in a Swedish estuary. Oikos, 27: 414-427 https://doi.org/10.2307/3543460
  29. Rosenberg, R., S. Agrenius, B. Hellman, H.C. Nilsson and K. Norling, 2002. Recovery of marine benthic habitats and fauna in a Swedish fjord following improved oxygen conditions. Mar. Ecol. Prog. Ser., 234: 43-53 https://doi.org/10.3354/meps234043
  30. Savage, C., R. Elmgren, and U. Larsson, 2002. Effects of sewagederived nutrients on an estuarine macrobenthic community. Mar. Ecol. Prog. Ser., 243: 67-82 https://doi.org/10.3354/meps243067
  31. Shannon, C.E. and W. Weaver, 1963. The mathematical theory of communications. University of Illinois Press, Urbana, 125pp
  32. Shepard, F.P., 1954. Nomenclature based on sand-silt-clay ratios. J. Sediment. Petrol., 24: 151-158
  33. Simboura, N., A. Zenetos, P. Panayotidis and A. Makra, 1995. Changes in benthic community structure along a environmental pollution gradient. Mar. Pollut. Bull., 30: 470-474 https://doi.org/10.1016/0025-326X(95)00237-H
  34. Simpson, E.H., 1949. Measurement of diversity. Nature, 163: 688 https://doi.org/10.1038/163688a0
  35. Smith, J. and S.E. Shackley, 2006. Effects of the closure of a major sewage outfall on sublittoral, soft sediment benthic communities. Mar. Pollut. Bull., 52: 645-658 https://doi.org/10.1016/j.marpolbul.2005.10.016
  36. Tapp, J.F., N. Shillabeer and C.M. Ashman, 1993. Continued observations of the benthic fauna of the industrialised Tees estuary, 1979-1990. J. Exp. Mar. Biol. Ecol., 172: 67-80 https://doi.org/10.1016/0022-0981(93)90089-7
  37. Warwick, R.M., 1993. Environmental impact studies on marine communities: pragmatical considerations. Aust. J. Ecol., 18: 63-80 https://doi.org/10.1111/j.1442-9993.1993.tb00435.x
  38. Weston, D.P., 1990. Quantitative examination of macrobenthic community changes along an organic enrichments gradient. Mar. Ecol. Prog. Ser., 61: 233-244 https://doi.org/10.3354/meps061233