High-resolution Stable Isotope Analyses of the Otolith of Argyrosomus argentatus

고해상 시료 채취를 통한 보구치 이석의 안정동위원소 분석

  • Khim, Boo-Keun (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Tae-Won (Department of Oceanography, Chungnam National University)
  • 김부근 (부산대학교 지구환경시스템학부) ;
  • 이태원 (충남대학교 해양학과)
  • Published : 2008.02.29

Abstract

Using micromill, discrete carbonate powders from the otolith of Argyrosomus argentatus were sampled along the growth band, and high-resolution stable isotope profiles were obtained. The ${\delta}^{18}O$ and ${\delta}^{13}C$ values are increasing gradually from the core to the margin. However, such increases do not seem to be attributed to the environmental property changes during the growth, but to the dominant effect of metabolic carbons during the early growth, and then, the isotopic composition seems to be equilibrium to the environmental condition. This paper allows the diverse applicability of high-resolution isotope research to the fish otoliths in the future.

미세채취기를 이용하여 보구치(Argyrosomus argentatus)의 이석으로부터 탄산염 시료를 매우 조밀하게 채취하여 성장에 따른 고해상의 안정동위원소비의 변화를 조사하였다. 이석의 ${\delta}^{18}O$값과 ${\delta}^{13}C$값은 성장에 따라 점진적으로 증가하는 경향을 보였다. 그러나, 이러한 증가는 서식환경의 변화에 의한 것이 아니라, 초기성장동안 어류의 생리적인 작용에 의한 영향을 많이 받다가 점차적으로 줄어들면서 해양환경에 평형을 이루는 것으로 해석된다. 이 연구 방법과 결과는 앞으로 다른 어류의 이석으로부터 고해상의 안정동위원소 변화를 획득하여 어류의 성장과 서식환경의 변화를 연구하는데 적용할 수 있는 가능성을 제시한다.

Keywords

References

  1. 국립수산과학원, 2005. 이석 연령 사정 기술서. 수산자원평가보고서 제9호, 131 pp.
  2. 김동우, 한경남, 임양재, 2003. 황복, Takifugu obscurus의 초기성장과 이석의 미세구조. 바다, 8: 237-242
  3. 김수암, 강수경, 2001. 동해 생태계 규명을 위한 안정동위원소의 이용: 명태와 연어 이석의 경우. 한국수산자원학회지, 4: 64-72
  4. 문형태, 이태원, 1999. 이석의 미세구조를 이용한 가덕도 천해역 문치가자미(Limanda yokohamae) 유어의 연령과 성장. 한국어류학회지, 11: 46-51
  5. 백근욱, 허성회, 2004. 남해에 서식하는 군평선이(Hapalogenys mucronatus)의 이석사정에 의한 연령과 성장. 한국어류학회지, 16: 301-308
  6. Beggs, G.A. and C.R. Weidman, 2001. Stable ${\delta}^{13}C$ and ${\delta}^{18}O$ isotopes in otoliths of haddock Melanogrammus aeglefinus from the Northwest Atlantic Ocean. Mar. Ecol. Prog. Ser. 216: 223-233 https://doi.org/10.3354/meps216223
  7. Campana, S.E. and S.R. Thorrold, 2001. Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can. J. Fish. Aqu. Sci. 58: 30-38 https://doi.org/10.1139/cjfas-58-1-30
  8. Chung, C.S., 1998. Origin of water masses and fluxes of chemical materials in the East China Sea and South Sea of Korea. Ph.D. thesis, Inha Univ., 159 pp. (in Korean)
  9. Dettman, D.L. and K.C. Lohmann, 1995. Microsampling carbonates for stable isotope and minor element analysis: physical separation of samples on a 20 micrometer scale. J. Sediment. Res. 65A: 566-569
  10. Emrich, K., D.H. Ehhalt, and J.C. Vogel, 1970. Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet. Sci. Lett. 8: 363-371 https://doi.org/10.1016/0012-821X(70)90109-3
  11. Epstein, S., R. Buchsbaum, H. Lowenstam, and H.C. Urey, 1953. Revised carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull. 64: 1315-1326 https://doi.org/10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2
  12. Gao, Y.W., 1999. Microsampling of fish otoliths: a comparison between DM2800 and Dremel in stable isotope analysis. Environ. Biol. Fishes 55: 443-448 https://doi.org/10.1023/A:1007505731740
  13. Grossman, E.L. and T.L. Ku, 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem. Geol. 59: 59-74 https://doi.org/10.1016/0009-2541(86)90044-6
  14. Kalish, J.M., 1989. Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition. J. Exp. Mar. Biol. Ecol. 132: 151-178 https://doi.org/10.1016/0022-0981(89)90126-3
  15. Khim, B.K. and D.E. Krantz, 1996. Oxygen isotopic identity of the Delaware Coastal Current. J. Geophys. Res. 101: 16509-16514 https://doi.org/10.1029/96JC00201
  16. Khim, B.K., K.S. Woo, and J.G. Je, 2000. Stable isotope profiles of bivalve shells: seasonal temperature variations, latitudinal temperature gradients and biological carbon cycling along the east coast of Korea. Cont. Shelf Res. 20: 843-861 https://doi.org/10.1016/S0278-4343(00)00004-2
  17. Lee, J.U. and Y.H. Hur, 1993. Comparative study on age determination using scales and otoliths of Walleye Pollock Theragra chalcogramma in the Bering Sea and Gulf of Alaska. Korea J. Ichthy. 5: 177-183
  18. Lee, T.W. and J.S. Byun, 1996. Microstructural growth in otoliths of conger eel (Conger myriaster) leptocephali during the metamorphic stage. Mar. Biol. 125: 259-268 https://doi.org/10.1007/BF00346306
  19. Lee, T.W. and K.S. Lee, 1989. Daily growth increments and lunar pattern in otolith of the eel, Anguilla japonica, in the freshwater. Bull. Korean Fish. Soc. 22: 36-40
  20. Lee, T.W. and G.C. Kim, 2000. Microstructural growth in otoliths of black rockfish (Sebastes schlegeli) from prenatal larval to early juvenile stages. Ichthy. Res. 47: 335-341 https://doi.org/10.1007/BF02674260
  21. Okamura. O. (ed). 1986. Fishes of the East China Sea and the Yellow Sea. Sekai Reg. Fish. Res. Inst., 501 pp
  22. Patterson, W.P., 1998. North American continental seasonality during the last millennium: high-resolution analysis of sagittal otoliths. Palaeogeogr. Palaeoclimat. Palaeoecol. 138: 271-303 https://doi.org/10.1016/S0031-0182(97)00137-5
  23. Radtke, R.L., W. Showers, E. Moksness, and P. Lenz, 1996. Environmental information stored in otoliths: insights from stable isotopes. Mar. Biol. 127: 161-170 https://doi.org/10.1007/BF00993656
  24. Rhoads, D.C. and R. Lutz, 1980. Skeletal growth of aquatic organisms. Plenum Press, New York. 750 pp.
  25. Romanek, C.S., E.L. Grossman, and J.W. Morse, 1992. Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim. Cosmochim. Acta 56: 419-430 https://doi.org/10.1016/0016-7037(92)90142-6
  26. Thorrold, S.R, S.E. Campana, C.M. Jones, and P.K. Swart, 1997. Factors determining ${\delta}^{13}C$ and ${\delta}^{18}O$ fractionation in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta 61: 2909-2919 https://doi.org/10.1016/S0016-7037(97)00141-5
  27. Wurster, C.M. and W.P. Patternson, 2001. Late Holocene climate change for the eastern interior United States: evidence from highresolution ${\delta}^{18}$O values of sagittal otoliths. Palaeogeogr. Palaeoclimat. Palaeoecol. 170: 81-100 https://doi.org/10.1016/S0031-0182(01)00229-2
  28. Wurster, C.M., W.P. Patterson, and M.M. Cheatham, 1999. Advances in micromilling techniques: A new apparatus for acquiring highresolution oxygen and carbon stable isotope values and major/ minor elemental ratios from accretionary carbonate. Comp. Geosci. 25: 1155-1162