DOI QR코드

DOI QR Code

Study on the Variation of Dielectronic Constant for an Organic Insulator Film

유기물 절연 박막에 대한 유전상수의 변화에 대한 연구

  • Oh, Teresa (School of Electronic and Information Engineering, Cheongju University)
  • Published : 2008.07.30

Abstract

The SiOC film of carbon centered system was prepared using bistrimethylsilylmethane and oxygen mixed precursor by the chemical vapor deposition. The chemical properties of the SiOC film were analyzed by the contact anlge and FTIR spectra. The dielectric constant of the deposited films decreased after annealing process, and the correlation between the increasing the BTMSM/$O_2$ flow rate ratio and the dielectric constant did not exist. However, the trend of increasing or decreasing of the dielectric constant repeated and there is the correlation ship between the dielectric constant and the Si-O-C bond in the range of $950{\sim}1200\;cm^{-1}$. The dielectric constant decreased between samples with the chemical shift. The lowest dielectric constant was 1.65 at the sample, which was observed the chemical shift.

SiOC 박막을 산소와 bistrimethylsilylmethane 전구체의 유량비를 다르게 하여 플라즈마 발생 화학적 기상 증착방법으로 증착하였다. 증착된 SiOC박막은 Fourier transform infrared spectroscopy에 의해서 분석하였으며, 알킬기에 의한 $1000\;cm^{-1}$ 근처에 나타나는 Si-O-C 결합의 형성되는 모양과 유전상수와의 상관성에 대하여 살펴보았다. 열처리 유전상수는 더욱 낮아졌고, BTMSM/$O_2$의 유량비가 증가함에 따라서 유전상수의 선형적인 상관성은 없었다. 구간별로 유전상수는 증가했다가 감소하는 경향성이 반복적으로 나타났으며, 유전상수와의 상관성은 FTIR 스펙트라 분석기에 의해서 $950{\sim}1200\;cm^{-1}$ 에서 나타나는 Si-O-C 결합모드에서 찾을 수 있었다. Si-O-C 결합모양이 넓게 퍼지는 화학적 이동이 관찰되는 곳에서 유전상수는 낮아졌으며, 이러한 화학적 이동이 일어나는 샘플에서 유전상수가 1.65로 조사되었다.

Keywords

References

  1. M. J. Kellicutt, I. S. Suzuki, C. R. Burr, M. Suzuki, M. Ohashi and M. S. Whittingham, Physical Review B47, 13664 (1993)
  2. P. W. May, S. Hohn, W. N, Wang and N. A. Fox, Appl. Phys. Lett. 27, 2182 (1998)
  3. D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson and D. G. Schlom, IEEE ELECTRON DEVICE LETTERS 18, 87 (1997) https://doi.org/10.1109/55.556089
  4. Ioannis Kymissis, C. D. Dimitrakopoulos and Sampath Purushothaman, IEEE TRANSACTIONS ON ELECTRON DEVICES 48, 1060 (2001) https://doi.org/10.1109/16.925226
  5. Giulia Galli and Richard M. Martin, Phys. Rev. Lett. 62, 555 (1989) https://doi.org/10.1103/PhysRevLett.62.555
  6. A. Grill and D. A. Neumayer, J. Appl. Phys. 94, 6697 (2003) https://doi.org/10.1063/1.1618358
  7. P. Masri, Surface science reports 48, 1 (2002) https://doi.org/10.1016/S0167-5729(02)00099-7
  8. Jin Yong Kim, Moo Sung Hwang, Yoon-Hae Kim, and Hyeong Joon Kim, Young Lee, J. Appl. Phys. 90, 2469 (2001) https://doi.org/10.1063/1.1388861
  9. J. Frenkel, Phys. Rev. 54, 647 (1938) https://doi.org/10.1103/PhysRev.54.647
  10. J. R. Kalnin and E. Kotomin, J. Phys. A:Math. Gen. 31, 7227 (1998) https://doi.org/10.1088/0305-4470/31/35/004
  11. Seung Youb Lee, Heon Ryu, Jun Yong Hong, Min Hyeng Yeom, Ji Hoon Yang, Woo Chel Choi, Myeng Hoi Kwon and Chong Yun Park, J. Kor. Vac. Soc. 16, 291 (2007) https://doi.org/10.5757/JKVS.2007.16.4.291
  12. Soo In Kim, Chang Woo Lee, J. Kor. Vac. Soc. 16, 348 (2007) https://doi.org/10.5757/JKVS.2007.16.5.348
  13. P. R. Emtage and W. Tantraporn, Phys. Rev. Lett. 8, 267 (1962) https://doi.org/10.1103/PhysRevLett.8.267
  14. J. G. Simmons, Physial Review 155, 657 (1967) https://doi.org/10.1103/PhysRev.155.657
  15. T. Oh, IEEE transactions on Nanotechnology 5, 23 (2006) https://doi.org/10.1109/TNANO.2005.858591