DOI QR코드

DOI QR Code

Comparison of Muscle Color, Taste and Nutrition Components Between Red Seabreams Cultured by Feeding and Starving

급이 및 비급이 참돔의 색, 맛 및 영양성분 비교

  • Shin, Gil-Man (Division of Food Science, Sunchon National University) ;
  • Ahn, You-Seong (Division of Food Science, Sunchon National University) ;
  • Shin, Dong-Myung (Mijori Fishery) ;
  • Kim, Hye-Suk (Division of Marine Bioscience/Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Hyung-Jun (Division of Marine Bioscience/Institute of Marine Industry, Gyeongsang National University) ;
  • Yoon, Min-Seok (Division of Marine Bioscience/Institute of Marine Industry, Gyeongsang National University) ;
  • Heu, Min-Soo (Division of Marine Bioscience/Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Jin-Soo (Division of Marine Bioscience/Institute of Marine Industry, Gyeongsang National University)
  • 신길만 (순천대학교 식품과학부) ;
  • 안유성 (순천대학교 식품과학부) ;
  • 신동명 (미조리 수산) ;
  • 김혜숙 (경상대학교 해양생명과학부/해양산업연구소) ;
  • 김형준 (경상대학교 해양생명과학부/해양산업연구소) ;
  • 윤민석 (경상대학교 해양생명과학부/해양산업연구소) ;
  • 허민수 (경상대학교 해양생명과학부/해양산업연구소) ;
  • 김진수 (경상대학교 해양생명과학부/해양산업연구소)
  • Published : 2008.09.30

Abstract

For the effective use of cultured red seabream, the muscle color, taste and nutrition components between red seabreams cultured by feeding and starving were compared. The proximate composition of red seabream muscle cultured by starving (RCS) was 72.7% moisture, 21.1% protein, 3.7% lipid and 1.4% crude ash. In comparison to red seabream muscle cultured by feeding (RCF), moisture and crude lipid of RCS were each 3% higher and 3% lower. No difference was, however, found in the other proximate compositions. The Hunter color value of RCS was 37.52 for L value, -1.47 for a value, 0.71 for b value and 59.33 for ${\Delta}E$ value, which was slightly higher in the L value than that of red seabream muscle cultured feeding (RCF); however, no differences were found in the other Hunter color values. TCA soluble-N content of RCS was 403.8 mg/100 g, which was higher than that of RCF (314.7 mg/100 g). In taste values, the major free amino acids of both RCS and RCF were glutamic acid, alanine, lysine and histidine. Total amino acid content of RCS was 21.2 g/100 g, which was higher than that of RCF. The mineral content of RCS was slightly higher in potassium than that of RCF, while lower in magnesium. According to the result of sensory evaluation, RCS was superior in taste and texture to RCF, while similar in color and flavor.

참돔의 효율적 이용을 위한 기초 연구로 급이 및 비급이 참돔의 색조, 맛 및 영양 특성에 대하여 살펴보았다. 비급이 참돔의 일반성분은 수분의 경우 72.7%, 조단백질의 경우 21.1%, 조지방의 경우 3.7% 및 조회분의 경우 1.4%로, 급이 참돔의 일반성분에 비하여 수분의 경우 약 3%가 높았고, 조지방의 경우 약 3%가 낮았으며, 조단백질 하량과 조회분 함량에서는 거의 차이가 없었다. 비급이 양식산 참돔 근육의 명도, 적색도, 황색도 및 색차는 각각 37.52, -1.47, 0.71 및 59.33으로, 급이 양식산 참돔 근육의 헌터 색조에 비하여 명도의 경우 미미한 정도에 높았던 반면 기타 적색도, 황색도 및 색차의 경우 차이가 인정되지 않았다. TCA 가용성 질소 함량은 비급이 참돔이 403.8 mg/100 g으로, 급이 참돔 보다 높았다. Taste value로 살펴 본 급이 및 비급이 참돔의 주요 유리아미노산은 두 종 모두가 glutamic acid, alanine, lysine 및 histidine이었다. 총 아미노산 함량은 비급이 참돔이 21.2 g/100 g으로, 급이 참돔보다 약간 높았다. 주요 구성 아미노산으로는 급이 유무에 관계없이 두 종의 참돔이 모두 glutamic acid(약 14.0%), aspartic acid(약 10%) 및 lysine(약 10%) 등으로 차이가 없었다. 비급이 참돔이 급이 참돔에 비하여 칼륨의 경우 높았고, 마그네슘의 경우 낮았으나, 기타 철 및 칼슘 함량의 경우 차이가 없었다. 관능검사 결과 비급이 참돔이 급이 참돔에 비하여 색조 및 냄새의 경우 차이가 없었으나, 맛 및 조직감의 경우 우수하다고 평가되었다.

Keywords

References

  1. Kim JS, Yeum DM, Kang HG, Kim IS, Kong CS, Lee TG, Heu MS. 2005. Fundamentals and applications for canned foods. 3rd ed. Hyoil Publishing Co., Seoul. p 27-76
  2. Kim JS, Heu MS, Kim HS, Ha JH. 2007. Fundamental and application of seafood processing. 1st ed. Hyoil Publishing Co., Seoul. p 11-14
  3. Kim JS, Heu MS, Kim HS, Ha JH. 2007. Fundamental and application of seafood processing. 1st ed. Hyoil Publishing Co., Seoul. p 122-126
  4. National fisheries research and development agency republic of Korea. 1995. Supplemented chemical composition of marine products in Korea. National fisheries research and development agency republic of Korea. p 13-20
  5. http://badasori.momaf.go.kr/matrix/momaf/trans/trans.jsp?filename=4-1-1&h_category=MA
  6. http://100.naver.com/100.nhn?docid=704339
  7. Kim HY, Shin JW, Park HO, Choi SH, Jang YM, Lee SO. 2000. Comparison of taste compounds of red sea bream, rockfish and flounders differing in the localities and growing conditions. J Food Sci Technol 32: 550-563
  8. Kim TJ, Bae JH, Yeo HK, Shim KB, Jeong HJ, Cho YJ. 2004. Quality evaluation of red seabream, Pagrus major by physicochemical method. J Aquaculture 17: 173-179
  9. Lee YS. 1998. Studies on the muscle quality of cultured and wild red seabream (Pagrosomus auratus) and flounder (Paralichthys divaceus). PhD Dissertation. Kyung Hee University, Korea
  10. Morishita T, Uno K, Matsumoto Y, Takahashi T. 1988. Comparison of the proximate compositions in cultured red sea bream differing the localities and culture methods, and of the wildfish. Bull Japan Soc Sci Fish 54: 1965-1970 https://doi.org/10.2331/suisan.54.1965
  11. Shim KB, Bae JH, Jeong HJ, Yeo HK, Kim TJ, Cho YJ. 2004. Indices for quality evaluation by physicochemical and chemoenzymatic method in red seabream, Pagrus major. J Aquaculture 17: 228-232
  12. Tachibana K, Doi T, Tsuchimoto M, Misima T, Ogura M, Matsukiyo K, Yasuda M. 1988. The effects of swimming exercise on flesh texture of cultured red seabream. Nippon Suisan Gakkaishi 54: 677-681 https://doi.org/10.2331/suisan.54.677
  13. Touhata K, Toyohara H, Tonaka M, Tokuta Y, Sakaguchi M, Tanaka H. 1998. Seasonal change in muscle firmness and proximate composition of red seabream. Fisheries Sci 64: 513-516
  14. AOAC. 1995. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists, Washington DC. p 69-74
  15. Ministry of Social Welfare of Japan. 1960. Volatile basic nitrogen. In Guide to Experiment of Sanitary Infection. Kenpakusha, Japan. Vol III, p 30-32
  16. Kato H, Rhue MR, Nishimura T. 1989. Role of free amino acids and peptides in food taste. In Flavor chemistry: trends and developments. American Chemical Society, Washington, DC. p 158-174
  17. Kim JS, Heu MS, Kang KT, Kim HS, Jee SJ, Park TB. 2006. Development of spaghetti sauce with adductor muscle of pearl oyster. J Korean Soc Food Sci Nutr 35: 1484-1490 https://doi.org/10.3746/jkfn.2006.35.10.1484
  18. Kim JS, Kang KT, Heu MS. 2007. Development of spaghetti sauce with oyster. J Korean Soc Food Sci Nutr 36: 93-99 https://doi.org/10.3746/jkfn.2007.36.1.093
  19. Kim JS, Oh KS, Lee JS. 2001. Comparison of food component between conger eel (Conger myriaster) and sea eel (Muraenesox cinereus). J Korean Fish Soc 34: 678-684
  20. KFDA (Korean Food and Drug Administration). 2006. Food Code. Moon-Yeoung Publishing Co., Seoul, Korea. p 70-72
  21. Steel RGD, Torrie H. 1980. Principle and procedures of statistic. 1st ed. McGraw-Hill Kogakusha, Tokyo. p 187-221
  22. Park YH, Kim SB, Chang DS. 1995. Seafood processing and utilization. Hyungsul Publishing Co., Seoul, p 73-79
  23. Lee KH, Kang SJ, Choi DB, Choi YJ, Youm MG. 1994. Utilization of ascidian (Halocynthia roretzi) tunic 1. Effect of ascidian tunic extracts on pigmentation and growth of rainbow trout (Oncorhynchus mykiss). Bull Korean Fish Soc 27: 232-239
  24. Park YH, Kim SB, Chang DS. 1995. Seafood processing and utilization. Hyungsul Publishing Co., Seoul. p 147-168
  25. Kim JS, Kim HS, Heu MS. 2006. Modern introductory foods. Hyoil Publishing Co., Seoul. p 31-45
  26. Kim JS, Kim HS, Heu MS. 2006. Modern introductory foods. Hyoil Publishing Co., Seoul. p 45-48
  27. The Korean Nutrition Society. 2000. Recommended dietary allowances for Koreans. 7th ed. Chungang Publishing Co., Seoul. p 157-166
  28. Heu MS, Park CK, Jee SJ, Min KH, Kim MJ, Kim EJ, Kang KT, Kim JS. 2007. Development of seasoned and dried oyster slice. J Korean Soc Food Sci Nutr 36: 87-92 https://doi.org/10.3746/jkfn.2007.36.1.087

Cited by

  1. Investigation of Food Quality Characterization of Processing By-product (Frame Muscle) from the Sea Rainbow Trout Oncorhynchus mykiss vol.48, pp.1, 2015, https://doi.org/10.5657/KFAS.2015.0026
  2. Comparison of the Food Quality of Freshwater Rainbow Trout Oncorhynchus mykiss Cultured in Different Regions vol.47, pp.2, 2014, https://doi.org/10.5657/KFAS.2014.0103
  3. Food Components of Striped Jewfish Stereolepis doederleini vol.44, pp.5, 2011, https://doi.org/10.5657/KFAS.2011.0550
  4. Food Quality of Rainbow Trout Oncorhynchus mykiss Domesticated in Seawater vol.47, pp.2, 2014, https://doi.org/10.5657/KFAS.2014.0114
  5. Comparison on the Food Quality Characteristics of Muscles from Salmonids according to Species, Imported Country, and Separated Part vol.48, pp.1, 2015, https://doi.org/10.5657/KFAS.2015.0016
  6. Food Component Characterization of Muscle around Pectoral Fin, Salmon Fillet Processing By-products vol.38, pp.1, 2009, https://doi.org/10.3746/jkfn.2009.38.1.070
  7. Nutritional and Microbiological Characterization of Fish Jerky Produced Using Frame Muscle of the Sea Rainbow Trout Oncorhynchus mykiss vol.49, pp.3, 2016, https://doi.org/10.5657/KFAS.2016.0263
  8. Nutritional Composition and Taste Properties of Abalone and Short-Neck Clam in Wando vol.50, pp.9, 2008, https://doi.org/10.3746/jkfn.2021.50.9.1010
  9. Analyzing the Metabolomic Profile of Yellowtail (Seriola quinquerdiata) by Capillary Electrophoresis-Time of Flight Mass Spectrometry to Determine Geographical Origin vol.11, pp.11, 2008, https://doi.org/10.3390/metabo11110793