DOI QR코드

DOI QR Code

Electrical Properties of Gadolinium-doped Ceria/Magnesia (CGO/MgO) Composite Electrolytes

Gadolinium-doped Ceria/Magnesia (CGO/MgO) 복합체 전해질의 전기적 특성 분석

  • Jo, Seung-Hwan (Department of Materials Science and Engineering, Korea Advanced Institute Science and Technology (KAIST)) ;
  • Muralidharan, P. (Department of Materials Science and Engineering, Korea Advanced Institute Science and Technology (KAIST)) ;
  • Kim, Do-Kyung (Department of Materials Science and Engineering, Korea Advanced Institute Science and Technology (KAIST))
  • 조승환 (한국과학기술원 신소재공학과) ;
  • ;
  • 김도경 (한국과학기술원 신소재공학과)
  • Published : 2008.09.27

Abstract

Composites of gadolinium-doped ceria/magnesia(CGO/MgO) were synthesized and characterized for the electrolytes of intermediate temperature solid oxide fuel cells. XRD and SEM results revealed that composite electrolytes consisted of their own phases after sintering at $1400^{\circ}C$ without noticeable solid solution of Mg into CGO. As the MgO content increased, the total electrical conductivity decreased, which might be attributed to the decrease of grain boundary conductivity, possibly due to the lowering of the continuity of the CGO grains and blocking effects of the insulating MgO phase. The space charge effect may not be a significant factor to affect the electrical conductivity of the CGO/MgO composites.

Keywords

References

  1. B. C. H. Steele, Nature, 414, 345 (2001) https://doi.org/10.1038/35104620
  2. M. Mogensen, N. M. Sammes and G. A. Tompsett, Solid State Ionics, 129, 63 (2000) https://doi.org/10.1016/S0167-2738(99)00318-5
  3. H. Inaba, H. Tagawa, Solid State Ionics, 83, 1 (1996) https://doi.org/10.1016/0167-2738(95)00229-4
  4. D. P. Fagg, V. V. Kharton and J. R. Frade, J. Electroceram. Soc., 9, 199 (2002) https://doi.org/10.1023/A:1023269326651
  5. J. C. Abrantes, D. Perez-Coll, P. Nunez and J. Frade, Electrochim. Acta, 48, 2761 (2003) https://doi.org/10.1016/S0013-4686(03)00395-5
  6. S. Luebke and H. D. Wiemhoefer, Solid State Ionics, 117, 229 (1999) https://doi.org/10.1016/S0167-2738(98)00408-1
  7. L. M. Navarro, F. M. B. Marques, J. R. Frade, J. Electrochem. Soc. 144, 267 (1997) https://doi.org/10.1149/1.1837395
  8. S. H. Park and H. I. Yoo, Solid State Ionics, 176, 1485 (2005) https://doi.org/10.1016/j.ssi.2005.03.015
  9. B. Zhu, J. Power Sources, 93, 82 (2001) https://doi.org/10.1016/S0378-7753(00)00564-4
  10. B. Zhu, X. T. Yang, J. Xu, Z. G. Zhu, S. J. Ji, M. T. Sun and J. C. Sun, J. Power Sources, 118, 47 (2003) https://doi.org/10.1016/S0378-7753(03)00060-0
  11. J. B. Huang, L. Z. Yang, R. F. Gao, Z. Q. Mao and C. Wang, Electrochem. Commun., 8, 785 (2006) https://doi.org/10.1016/j.elecom.2006.03.016
  12. J. Huang, Z. Mao, Z. Liu and C. Wang, Electrochem. Commun., 9, 2601 (2007) https://doi.org/10.1016/j.elecom.2007.07.036
  13. B. Zhu, J. Power Sources, 93, 82 (2001) https://doi.org/10.1016/S0378-7753(00)00564-4
  14. B. Zhu, X. T. Yang, J. Xu, Z. G. Zhu, S. J. Ji, M. T. Sun, J. C. Sun, J. Power Sources, 118, 47 (2003) https://doi.org/10.1016/S0378-7753(03)00060-0
  15. J. B. Huang, L. Z. Yang, R. F. Gao, Z. Q. Mao, C. Wang, Electrochem. Commun., 8, 785 (2006) https://doi.org/10.1016/j.elecom.2006.03.016
  16. R. Chockalingam, V. R. W. Amarakoon and H. Giesche, Europ. Ceram. Soc., 28, 959 (2008) https://doi.org/10.1016/j.jeurceramsoc.2007.09.031
  17. J. Maier, Solid State Ionics, 23, 59 (1987) https://doi.org/10.1016/0167-2738(87)90082-8
  18. S. Kim, J. Fleig and J. Maier, Phys. Chem., 5, 2268 (2003) https://doi.org/10.1039/b300170a

Cited by

  1. by Precipitation Method vol.22, pp.1, 2012, https://doi.org/10.3740/MRSK.2012.22.1.054