DOI QR코드

DOI QR Code

Lead-free BaTiO3-(Bi0.5K0.5)TiO3 PTCR Ceramics and Effects of Nb2O5 on Its PTCR Characteristics

무연 BaTiO3-(Bi0.5K0.5)TiO3 PTCR 세라믹과 PTCR 특성에 미치는 Nb2O5의 효과

  • 정영훈 (요업(세라믹)기술원 전자부품.소재본부) ;
  • 박용준 (요업(세라믹)기술원 전자부품.소재본부) ;
  • 이미재 (요업(세라믹)기술원 전자부품.소재본부) ;
  • 이영진 (요업(세라믹)기술원 전자부품.소재본부) ;
  • 백종후 (요업(세라믹)기술원 전자부품.소재본부) ;
  • 최진수 ((주)하이엘) ;
  • 이우영 ((주)하이엘)
  • Published : 2008.09.27

Abstract

Positive temperature coefficient of resistivity (PTCR) characteristics of (1-x)$BaTiO_3-x(Bi_{0.5}K_{0.5})TiO_3$ ceramics doped with $Nb_2O_5$ were investigated in order to develop the Pb-free PTC thermistor available at high temperatures of > $120^{\circ}C$. The PTCR characteristics appearing in the ($B_{i0.5}K_{i0.5})TiO_3$ (< 5 mol%) incorporated $BaTiO_3$ ceramics, which might be mainly due to $Bi^{+3}$ ions substituting for $Ba^{+2}$ sites. The 0.99$BaTiO_3-0.01(Bi_{0.5}K_{0.5})TiO_3$ ceramics showed good PTCR characteristics of a low resistivity at room temperature (${\rho}_r$) of $31{\Omega}{\cdot}cm$ a high ${\rho}_{max}/{\rho}_{min}$ ratio of $5.38{\times}10^3$, and a high resistivity temperature factor (${\alpha}$) of $17.8%/^{\circ}C$. The addition of $Nb_2O_5$ to 0.99$BaTiO_3-0.01(Bi_{0.5}K_{0.5})TiO_3$ ceramics further improved the PTCR characteristics. Especially, 0.025 mol% $Nb_2O_5$ doped 0.99$BaTiO_3-0.01(Bi_{0.5}K_{0.5})TiO_3$ ceramics exhibited a significantly increased ${\rho}_{max}/{\rho}_{min}$ ratio of $8.7{\times}10^3$ and a high ${\alpha}$ of $18.6%/^{\circ}C$, along with a high $T_c$ of $148^{\circ}C$ despite a slightly increased ${\rho}_r$ of $31{\Omega}{\cdot}cm$.

Keywords

References

  1. M.-H. Lin and H.-Y. Lu, Mater. Sci. Eng. A, 323, 167 (2002) https://doi.org/10.1016/S0921-5093(01)01356-9
  2. B.-K. Park, J.-H. Lee, D.-Y. Kim and N.-M. Hwang, J. Am. Ceram. Soc., 84(11), 2707 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb01077.x
  3. E. D. Macklen, Electrochemical Publications, 188 (1979)
  4. Development of lead-free PTC thermistor materials, Index of membership/2004/05_seika, 0020. pdf, On the Web. Retrieved Sep. 10, 2008 from http://nissan-zaidan.or.jp/membership/2004/05_seika/
  5. H. Takeda, W. Aoto and T. Shiosaki, Appl. Phys. Lett., 87, 102104 (2005) https://doi.org/10.1063/1.2042551
  6. T. Shimada, K. Touji, Y. Katsuyama, H. Takeda and T. Shiosaki, J. Eur. Ceram. Soc., 27, 3877 (2007) https://doi.org/10.1016/j.jeurceramsoc.2007.02.171
  7. T. Takenaka, K. Maruyama and K. Sakata, Jap. J. Appl. Phys., 30(9B), 2236 (1991) https://doi.org/10.1143/JJAP.30.2236
  8. L. Gao, Y. Huang, Y. Hu and H. Du, Ceram. Int., 33, 1041 (2007) https://doi.org/10.1016/j.ceramint.2006.03.006
  9. J.-R. Gomah-Pettry, S. Said, P. Marchet and J.-P. Mercurio, J. Eur. Ceram. Soc., 24, 1165 (2004) https://doi.org/10.1016/S0955-2219(03)00473-4
  10. W. Huo and W. Qu, Sens. Actuators A, 128, 265 (2006) https://doi.org/10.1016/j.sna.2006.01.022
  11. A. Sasaki, T. Chiba, Y. Mamiya and E. Otsuki, Jpn. J. Appl. Phys., 38, 5564 (1999) https://doi.org/10.1143/JJAP.38.5564
  12. S. Zhao, G. Le, A. Ding, T. Wang and Q. Yin, J. Phys. D, 39, 2277 (2006) https://doi.org/10.1088/0022-3727/39/10/042
  13. M. Wegmann, R. Bronnimann, F. Clemens and T. Graule, Sens. Actuators A, 135, 394 (2007) https://doi.org/10.1016/j.sna.2006.08.008
  14. X.-H. Wang, X.-Y. Deng, H.-L. Bai, H. Zhou, W.-Guo. Qu and L.-T. Li, J. Am. Ceram. Soc., 89(2), 438 (2006) https://doi.org/10.1111/j.1551-2916.2005.00728.x
  15. S. B. Desu, and D. A. Payne, J. Am. Ceram. Soc., 73(11), 3398 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb06467.x

Cited by

  1. PTC properties of PE/CB composites for energy saving heating elements vol.515, pp.1, 2017, https://doi.org/10.1080/00150193.2017.1360111