DOI QR코드

DOI QR Code

Potential Antioxidant Activites of Enzymatic Digests from Benthic Diatoms Achnanthes longipes, Amphora coffeaeformis, and Navicula sp. (Bacillariophyceae)

  • Lee, Seung-Hong (Faculty of Applied Marine Science, Cheju National University) ;
  • Karawita, Rohan (Faculty of Applied Marine Science, Cheju National University) ;
  • Affan, Abu (Department of Oceanography, Cheju National University) ;
  • Lee, Joon-Baek (Department of Oceanography, Cheju National University) ;
  • Lee, Bae-Jin (Marine Bioprocess Co. Ltd., Pukyong National University) ;
  • Jeon, You-Jin (Faculty of Applied Marine Science, Cheju National University)
  • Published : 2008.09.30

Abstract

In this study, we focused on natural water-soluble antioxidants from the Jeju benthic diatoms, Achnanthes longipes, Navicula sp. and Amphora coffeaeformis. They were prepared by enzymatic digestion using five carbohydrases (Viscozyme, Celluclast, AMG, Termamyl and Ultraflo) and five proteases (Protamex, Kojizyme, Neutrase, Flavourzyme and Alcalase) and their potential antioxidant activity was assessed. Among the enzymatic digests, Neutrase digest from A. coffeaeformis exhibited the highest effect in DPPH radical scavenging. Flavourzyme (48.7%), Viscozyme (47.4%) and Celluclast (45.7%) digests from Navicula sp. exhibited higher $O^{{\cdot}-}_2$ radical scavenging activity. Viscozyme digest from A. coffeaeformis (45.9%) possessed the highest effects in hydroxyl radical scavenging. Termamyl (89.3%) and Protamex (88.8%) digests from A. coffeaeformis had strong metal chelating activity. Lipid peroxidation was significantly inhibited in Termamyl and Kojizyme digests from A. longipes, AMG and Termamyl digests from Navicula sp. and Kojizyme digest from A. coffeaeformisi. These data suggest that enzymatic digests of the Jeju benthic diatoms might be valuable sources of antioxidant which can be applied in food and pharmaceutical industry.

Keywords

References

  1. Fridovich I. 1995. Superoxide radical and superoxide dismutases. Annu Rev Bioche 64: 97-112 https://doi.org/10.1146/annurev.bi.64.070195.000525
  2. Yang MY, HanYK, Noh BS. 2000. Analysis of lipid oxidation of soybean oil using the portable electronic nose. Korean J Food Sci technol 9: 146-150
  3. Ukeda H, Shimamura T, Tsubouchi M, Harada Y, Nakai Y, Sawamura M. 2002. Spectrophotometric assay of superoxide anion formed in Maillard reaction based on highly water-soluble tetrazolium salt. Anal Sci 18: 1151-1154 https://doi.org/10.2116/analsci.18.1151
  4. Gulcin I, Oktay M, Kufrevioc"glu O, Aslan A. 2002. Determination of antioxidant activity of lichen Cetraria islandica (L). Ach J Ethnopharmacol 79: 325-329 https://doi.org/10.1016/S0378-8741(01)00396-8
  5. Sherwin ER. 1990. Antioxidants. In Food Additives. Branen AI, Davidson PM, Salminen S, eds. Marcel Dekker, New York
  6. Lindenschmidt RC, Trika AF, Guard ME, Witschi HP. 1986. The effect of dietary butylated hydroxy toluene on liver and colon tumor development in mice. Toxicol 38: 151-160 https://doi.org/10.1016/0300-483X(86)90116-2
  7. Buyukokuroglu ME, GulcIn I, Oktay M, Kufrevioglu OI. 2001. In vitro antioxidant properties of dantrolene sodium. Pharmacol Res 44: 491-495 https://doi.org/10.1006/phrs.2001.0890
  8. Shahidi F, Wanasundara PKJPD. 1992. Phenolic antioxidants. Crit Rev Food Sci Nutr 32: 67-103 https://doi.org/10.1080/10408399209527581
  9. Aruoma OI. 1998. Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc 75: 199-212 https://doi.org/10.1007/s11746-998-0032-9
  10. Hirata T, Tanaka M, Ooike M, Tsunomura T, Sakaguchi M. 2000. Antioxidant activities of phycocyanobilin prepared from Spirulina platensis. J Appl Phycol 12: 435-439 https://doi.org/10.1023/A:1008175217194
  11. Benedettia S, Benvenutia F, Pagliarania S, Francoglia S, Scogliob S, Canestraria F. 2004. Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci 75: 2353-2362 https://doi.org/10.1016/j.lfs.2004.06.004
  12. Affan A, Lee JB. 2004. Seasonal characteristic of phytoplankton dynamics and environmental factors in the coast of Mara-do and U-do, Jeju Island, Korea. Algae 9: 235-245
  13. Affan A, Karawita R, Jeon YJ, Kim BY, Lee JB. 2006. Growth characteristics, bio-chemical composition and antioxidant activities of benthic diatom Grammatophora marina from Jeju coast, Korea. Algae 21: 141-148 https://doi.org/10.4490/ALGAE.2006.21.1.141
  14. Heo SJ, Lee KW, Song CB, Jeon YJ. 2003. Antioxidant activity of enzymatic extracts from brown seaweeds. Algae 18: 71-81 https://doi.org/10.4490/ALGAE.2003.18.1.071
  15. Shim JH. 1994. Illustrated Encyclopedia of Fauna and Flora of Korea. Marine phytoplankton. Ministry of Education, Republic of Korea. 34: 487
  16. AOAC. 1995. Official Method of Analysis. 16th ed. Association of Official Analytical Chemists, Virginia, USA
  17. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. Food Sci Technol 28: 25-30
  18. Muller HE. 1985. Detection of hydrogen peroxide produced by Microorganism on ABTS-peroxidase medium. Zentralbl Bakteriol Mikrobio Hyg 259: 151-158
  19. Nagai T, Inoue I, Inoue H, Suzuki N. 2003. Preparation and antioxidant properties of water extract of propolis. Food Chem 80: 29-33 https://doi.org/10.1016/S0308-8146(02)00231-5
  20. Chung SK, Osawa T, Kawakishi S. 1997. Hydroxyl radical-scavenging effects of spices and scavengers from black mustard (Brassica nigra). Biosci Biotechnol Biochem 6: 118-123
  21. Garrat DC. 1964. The Quantitative Analysis of Drugs. Chapman and Hall, Tokyo, Japan. p 456-458
  22. Decker EA, Welch B. 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem 38:674-677 https://doi.org/10.1021/jf00093a019
  23. Kikuzaki H, Nakatani N. 1993. Antioxidant effects of some ginger constituents. J Food Sci 58:1407-1410 https://doi.org/10.1111/j.1365-2621.1993.tb06194.x
  24. Chandler SF, Dodds JH. 1993. The effect of phosphate, nitrogen, and sucrose on the production of phenolics and solasidine in callus cultures of Solanum laciniatum. Plant Cell Rep 2:105-110 https://doi.org/10.1007/BF00270178
  25. Matsukawa R, Dubinsky Z, Kishimoto Y, Masak K, Masuda Y, Takeuchi T, Chihara M, Yamamoto Y, Niki E, Karube I. 1997. A comparison of screening methods for antioxidant activity in seaweeds. J Appl Phycol 9: 29-35 https://doi.org/10.1023/A:1007935218120
  26. Jao CH, Ko WC. 2002. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging by protein hydrolyzates from tuna cooking juice. Fish Sci 68: 430-435 https://doi.org/10.1046/j.1444-2906.2002.00442.x
  27. Oki T, Masuda M, Furuta S, Nishibia Y, Terahara N, Suda I. 2002. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purplefleshed sweet potato cultivars. J Food Chem Toxicol 67: 1752-1756
  28. Lu Y, Foo LY. 2000. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem 68: 81-85 https://doi.org/10.1016/S0308-8146(99)00167-3
  29. Siriwardhana N, Lee KW, Kim SH, Ha JW, Jeon YJ. 2003. Antioxidant activiy of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition. Food Sci Tech Int 9: 339-346 https://doi.org/10.1177/1082013203039014
  30. Spitz TT, Bergman M, Moppes D, Grossman S, Arad MS. 2005. Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp. J App Phycol 17: 215-222 https://doi.org/10.1007/s10811-005-0679-7
  31. Halliweill B. 1991. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Ame J Medicine 91: 14-19 https://doi.org/10.1016/0002-9343(91)90279-7
  32. Halliwell B, Gutteridge JM. 1989. Free radical in biology and medicine. Clarendon Press, Oxford. p 23-30
  33. Liu F, Ng TB. 2000. Antioxidative and free radical scavenging activities of selected medicinal herbs. Life Sci 66: 725-735 https://doi.org/10.1016/S0024-3205(99)00643-8
  34. Korycka-Dahl MB, Richardson T. 1978. Activated oxygen species and oxidation of food constituents. Crit Rev Food Sci Nutr 10: 209-241 https://doi.org/10.1080/10408397809527250
  35. Kitada M, Igarashi K, Hirose S, Kitagawa H. 1979. Inhibition by polyamines of lipid peroxidase formation in rat liver microsomes. Biochem Biophys Res Commun 87: 388-394 https://doi.org/10.1016/0006-291X(79)91808-4
  36. Radi R, Beckman JS, Bush KM, Freeman BA. 1991. Peroxynitrite induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288: 481-487 https://doi.org/10.1016/0003-9861(91)90224-7
  37. Moncada S, Palmer RM, Higgs EA. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109-142
  38. Gulcin I, Beydemir S, Ahmet HA, Elmasta M, Buyukokuroglu ME. 2004. In vitro antioxidant properties of morphine. Pharmacol Res 49: 59-66 https://doi.org/10.1016/j.phrs.2003.07.012
  39. Siriwardhana N, Jeon YJ, Kim SH, Ha JH, Heo SJ, Lee KW. 2004. Enzymatic hydrolysis for effective extraction of antioxidative compounds from Hizikia fusiformis. Algae 19: 59-68 https://doi.org/10.4490/ALGAE.2004.19.1.059
  40. Ramos EAP, Xiong YL. 2002. Antioxidant activity of soy protein hydrolysates in a liposomal system. J Food Sci 67: 2952-2956 https://doi.org/10.1111/j.1365-2621.2002.tb08844.x
  41. Ruperez P, Ahrazem O, Leal JA. 2002. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem 50: 840-845 https://doi.org/10.1021/jf010908o
  42. Athukorala Y, Jung WK, Vasanthan T, Jeon YJ. 2006. An anticoagulative polysaccharide from an enzymatic hydrolysate of Ecklonia cava. Carb Pol 66: 184-191 https://doi.org/10.1016/j.carbpol.2006.03.002
  43. Heo SJ, Park EJ, Lee KW, Jeon YJ. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour Technol 96: 1613-1623 https://doi.org/10.1016/j.biortech.2004.07.013

Cited by

  1. Antioxidant Activity of Solubilized Tetraselmis suecica and Chlorella ellipsoidea by Enzymatic Digests vol.14, pp.1, 2009, https://doi.org/10.3746/jfn.2009.14.1.021
  2. Potential of Benthic Diatoms Achnanthes longipes, Amphora coffeaeformisand Navicula sp. (Bacillariophyceae) as Antioxidant Sources vol.24, pp.1, 2009, https://doi.org/10.4490/ALGAE.2009.24.1.047
  3. Enzymatic Hydrolysis of Plants and Algae for Extraction of Bioactive Compounds vol.29, pp.4, 2013, https://doi.org/10.1080/87559129.2013.818012
  4. Processing Optimization of Gelatin from Rockfish Skin Based on Yield vol.13, pp.1, 2010, https://doi.org/10.5657/fas.2010.13.1.001
  5. Evaluation of the Antioxidant Properties of Pediastrum duplex and Dactylococcopsis fascicularis Microalgae vol.13, pp.1, 2010, https://doi.org/10.5657/fas.2010.13.1.018
  6. The Potential of a Brown Microalga Cultivated in High Salt Medium for the Production of High-Value Compounds vol.2017, 2017, https://doi.org/10.1155/2017/4018562
  7. Potential Antioxidant Activities of Enzymatic Digests from Fresh Water Microalgae, Pediastrum duplex and Dactylococcopsis fascicularis vol.24, pp.3, 2009, https://doi.org/10.4490/ALGAE.2009.24.3.169
  8. Microalgal Derivatives as Potential Nutraceutical and Food Supplements for Human Health: A Focus on Cancer Prevention and Interception vol.11, pp.6, 2008, https://doi.org/10.3390/nu11061226
  9. Significance Assessment of Amphora coffeaeformis in Arsenic-Induced Hemato- Biochemical Alterations of African Catfish (Clarias gariepinus) vol.7, pp.None, 2008, https://doi.org/10.3389/fmars.2020.00191
  10. Comprehensive assessment of benthic diatom (Amphora coffeaeformis) as a feed additive in Nile tilapia (Oreochromis niloticus) diet vol.51, pp.9, 2008, https://doi.org/10.1111/are.14686