DOI QR코드

DOI QR Code

Expression of Alpha-Amylase Gene from Bacillus licheniformis in Lactobacillus brevis 2.14

  • Lee, Kang-Wook (Division of Applied Life Science (BK21 program), Graduate School, Gyeongsang National University) ;
  • Park, Ji-Yeong (Division of Applied Life Science (BK21 program), Graduate School, Gyeongsang National University) ;
  • Kim, Gyoung-Min (Division of Applied Life Science (BK21 program), Graduate School, Gyeongsang National University) ;
  • Kwon, Gun-Hee (Division of Applied Life Science (BK21 program), Graduate School, Gyeongsang National University) ;
  • Park, Jae-Yong (Division of Applied Life Science (BK21 program), Graduate School, Gyeongsang National University) ;
  • Lee, Mee-Ryung (Division of Applied Life Science (BK21 program), Graduate School, Gyeongsang National University) ;
  • Chun, Ji-Yeon (Department of Food Science and Technology, Sunchon National University) ;
  • Kim, Jeong-Hwan (Institute of Agriculture & Life Science, Gyeongsang National University)
  • Published : 2008.09.30

Abstract

The $\alpha$-amylase gene, amyL, from Bacillus licheniformis was expressed in Lactobacillus brevis 2.14 and Escherichia coli $DH5{\alpha}$ using two different shuttle vectors, pCW4 and pSJE. E. coli transformants (TFs) harboring either $pCW4T{\alpha}$ or $pSJET{\alpha}$ produced active $\alpha$-amylase but L. brevis TFs did not, as determined by enzyme assays and zymography. But amyL transcripts were synthesized in L. brevis TFs. In terms of plasmid stability, pSJE, a theta-type replicon, was more stable than pCW4, an RCR (rolling circle replication) plasmid, in L. brevis without antibiotic selection.

Keywords

References

  1. Lee CW, Ko CY, Ha DM. 1992. Microfloral changes of the lactic acid bacteria during Kimchi fermentation and identification of the isolates. Kor J Appl Microbiol Biotechnol 20: 102-109
  2. Plengvidhya V, Breidt F Jr, Lu Z, Fleming HP. 2007. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Appl Environ Microbiol 73: 7697-7702 https://doi.org/10.1128/AEM.01342-07
  3. Lee KS, Shin YS, Lee CH. 1998. Acid tolerance of Lactobacillus brevis isolated from Kimchi. Kor J Food Sci Technol 30: 1399-1403
  4. Liu S, Dien BS, Nichols NN, Bischoff KM, Hughes SR, Cotta MA. 2007. Coexpression of pyruvate decarboxylase and alcohol dehydrogenase genes in Lactobacillus brevis. FEMS Microbiol Lett 274: 291-297 https://doi.org/10.1111/j.1574-6968.2007.00849.x
  5. Iijima K, Suzuki K, Ozaki K, Yamashita H. 2006. horC confers beer-spoilage ability on hop-sensitive Lactobacillus brevis ABBC$45^{cc}$. J Appl Microbiol 100: 1282-1288 https://doi.org/10.1111/j.1365-2672.2006.02869.x
  6. Jeong SJ, Park JY, Lee HJ, Kim JH. 2007. Characterization of pFMBL1, a small cryptic plasmid isolated from Leuconostoc mesenteroides SY2. Plasmid 57: 314-323 https://doi.org/10.1016/j.plasmid.2006.09.003
  7. Park JY, Jeong SJ, Lee AR, Park JY, Jeong WJ, Kim JH. 2007. Expression of $\alpha$-galactosidase gene from Leuconostoc mesenteroides SY1 in Leuconostoc citreum. J Microbiol Biotechnol 17: 2081-2084
  8. Kim JH, Woo SH. 1995. Expression of Bacillus licheniformis $\alpha$-amylase gene in Lactobacillus casei strains. J Microbiol Biotechnol 5: 257-263 https://doi.org/10.1159/000107866
  9. Kim IC, Jang SY, Cha JH, Ko YH, Park KH, Rho HM. 1998. Cloning and expression of thermostable $\alpha$-amylase gene in Escherichia coli from Bacillus licheniformis ATCC 27811. Kor J Appl Microbiol Bioeng 16: 369-373
  10. Chang HC, Chung DK. 2004. Characterization of pC7 from Lactobacillus paraplantarum C7 derived from kimchi and development of lactic acid bacteria-Escherichia coli shuttle vector. Plasmid 52: 84-88 https://doi.org/10.1016/j.plasmid.2004.05.001
  11. Jeong SJ, Park JY, Kim JH, Kim GM, Chun J, Lee JH, Chung DK, Kim JH. 2006. Transformation of Leuconostoc mesenteroides SY1, a strain isolated from Kimchi. J Microbiol Biotechnol 16: 149-152
  12. O'Sullivan DJ, Klaenhammer TR. 1993. Rapid mini-prep isolation of high quality plasmid DNA from Lactococcus and Lactobacillus spp. Appl Environ Microbiol 59: 2730-2733
  13. Dower WJ, Miller JF, Ragsdale CW. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16: 6127-6145 https://doi.org/10.1093/nar/16.13.6127
  14. Berthier F, Zagorec M, Champomier-Verges M, Ehrlich SD, Morel-Devile F. 1996. Efficient transformation of Lactobacillus sake by electroporation. Microbiology (Reading) 142: 1273-1279 https://doi.org/10.1099/13500872-142-5-1273
  15. Bernfeld P. 1955. Amylases. In Methods in Enzymology. Academic Press, CA. Vol 1, p 149-151
  16. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  17. Kiewiet R, Seegers JF, Venema G, Bron S. 1993. The mode of replication is a major factor in segregational plasmid instability in Lactococcus lactis. Appl Environ Microbiol 48: 726-731
  18. Axelsson A, Holck A, Birkrland SE, Aukrust T, Blom H. 1993. Cloning and nucleotide sequence of a gene from Lactobacillus sake Lb706 necessary for sakacin A production and immunity. Appl Environ Microbiol 59: 2868-2875
  19. de Ruyters PG, Kuipers OP, De Vos WM. 1996. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62: 3662-3667

Cited by

  1. Production of Cheonggukjang by Using a Recombinant Bacillus licheniformis Strain vol.14, pp.1, 2009, https://doi.org/10.3746/jfn.2009.14.1.090