DOI QR코드

DOI QR Code

Numerical Simulations of Cellular Secondary Currents in Open-Channel Flows using Non-linear k-ε Model

비선형 k-ε 모형을 이용한 개수로 흐름에서의 격자형 이차흐름 구조 수치모의

  • 강형식 (한국건설기술연구원 하천.해안연구실) ;
  • 최성욱 (연세대학교 사회환경시스템공학부) ;
  • 박문형 (한국건설기술연구원 하천.해안연구실)
  • Received : 2008.03.04
  • Accepted : 2008.03.23
  • Published : 2008.11.30

Abstract

In the present paper, turbulent open-channel flows over longitudinal bedforms are numerically simulated. The Reynolds- averaged Navier-Stokes equations in curvilinear coordinates are solved with the non-linear $k-{\varepsilon}$ model by Speziale( 1987). First, the developed model is applied to rectangular open channel flows for purposes of model validation and parameter sensitivity studies. It is found that the parameters $C_D$ and $C_E$ are important to the intensity of secondary currents and the level of turbulent anisotropy, respectively. It is found that the non-linear $k-{\varepsilon}$ model can hardly reproduce the turbulence anisotropy near the free surface. However, the overall pattern of the secondary currents by the present model is seen to coincide with measured data. Then, numerical simulations of turbulent flows over longitudinal bedforms are performed, and the simulated results are compared with the experimental data in the literature. The simulated secondary currents clearly show upflows and downflows over the ridges and troughs, respectively. The numerical results of secondary currents, streamwise mean velocity, and turbulence structures compare favorably with the measured data. However, it is observed that the secondary currents towards the troughs were significantly weak compared with the measured data.

본 연구에서는 횡방향 언덕-저면의 하상형상을 갖는 개수로 흐름을 수치모의 하였다. 곡선좌표계에 대한 지배방정식을 유도하고, 난류폐합을 위해 Speziale(1987)가 제안한 비선형 $k-{\varepsilon}$ 모형을 이용하였다. 개발된 모형의 개수로 흐름에 대한 적용성 및 모형 상수의 민감도를 분석하기 위해 직사각형 개수로 흐름을 수치모의 하였다. 그 결과 모형상수 $C_D$$C_E$는 각각 이차흐름 강도 및 난류의 비등방성에 영향을 미치는 것으로 확인되었다. 또한 비선형 $k-{\varepsilon}$ 모형이 자유수면에서 발생되는 난류의 비등방성을 정확히 모의할 수 없는 것으로 나타났으나, 전반적인 이차흐름 분포는 비교적 잘 예측하는 것으로 확인되었다. 한편 개발된 모형을 이용하여 횡방향 하상형상을 갖는 개수로 흐름을 수치모의하고 기존의 실험 결과와 비교하였다. 그 결과 비선형 $k-{\varepsilon}$ 모형이 하상형상의 언덕과 저면에서 발생되는 상향류 및 하향류를 비교적 정확히 예측하는 것으로 나타났으며, 계산된 주흐름방향 평균유속 및 난류구조 역시 기존의 실험 결과와 잘 일치하였다. 그러나 비선형 $k-{\varepsilon}$ 모형은 하상형상의 저면을 향하는 하향류를 과소 산정하는 것으로 확인되었다.

Keywords

References

  1. 최성욱, 박문형, 강형식(2007) 연속적인 횡방향 바닥형상을 갖는 폭이 넓은 개수로 흐름의 부유사 농도분포 수치모의, 2007년도 한국수자원학회 학술발표회논문집, CD ROM, 한국수자원학회
  2. Allen, J.R.L. (1966) On bedforms and palaeocurrents. Sedimentology, Vol. 6, pp. 153-190. https://doi.org/10.1111/j.1365-3091.1966.tb01576.x
  3. Allen, J.R.L. (1984) Sedimentary Structure, Vol. 2, Elsevier, New York, NY.
  4. Choi, S.-U., Park, M., and Kang, H. (2007) Numerical simulations of cellular secondary currents and suspended sediment transport in open-channel flows over smooth-rough bed strips. Journal of Hydraulic Research, IAHR, Vol. 45, No. 6, pp. 829-840. https://doi.org/10.1080/00221686.2007.9521820
  5. Colombini, M. (1993) Turbulence-driven secondary flows and formation of sand ridges. Journal of Fluid Mechanics, Vol. 254, pp. 701-719. https://doi.org/10.1017/S0022112093002319
  6. Gunter, A. (1971) Die kritisce mittlere Sohlenscubspannung beiGeschiebemischungen unter berucksichtigung der Deckschichtbildung und der turbulenzbedingten Sohlenschubspan nungsschwankungen. Mitteilung der Versuchsanstalt fur Wasserbau an der ETH Zurich, Vol. 3.
  7. Hinze, J.O. (1973) Experimental investigation on secondary currents in the turbulent flow through a straight conduit. Applied Science Research, Vol. 28, pp. 453-465. https://doi.org/10.1007/BF00413083
  8. Hirano, M. and Ohmoto, T. (1988) Experimental study on the interaction of between longitudinal vortices and sand ribbons. Proceedings of 6th congress of APD-IAHR, Tokyo, Japan.
  9. Hossain, M.S. and Rodi, W. (1980) Mathematical modeling of vertical mixing in stratified channel flow. Proceedings of the 2nd Symposium on Stratified Flows.
  10. Ikeda, S. (1981) Self-formed straight channels in sandy bed. Journal of the Hydraulic Division, ASCE, Vol. 107, pp. 389-406.
  11. Kang, H. and Choi, S.-U. (2006) Reynolds stress modeling of rectangular open channel flows. International Journal for Numerical Methods in Fluids, Vol. 51, No. 11, pp. 1319-1334. https://doi.org/10.1002/fld.1157
  12. Kinoshita, R. (1967) An analysis of the movement of flood waters by aerial photography; concerning characteristics of turbulence and surface flow. Photographic Surveying, Vol. 6, pp. 1-17 (in Japanese).
  13. McLean, S.R. (1981) The role of non uniform roughness in the formation of sand ribbons. Marine Geology, Vol. 42, pp. 49-74. https://doi.org/10.1016/0025-3227(81)90158-4
  14. McLelland, S.J., Ashworth, P.J., Best, J.L., and Livesey, J.R. (1999) Turbulence and secondary flow over sediment stripes in weakly bimodal bed material. Journal of Hydraulic Engineering, Vol. 125, No. 5, pp. 463-473. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:5(463)
  15. Muller, A. and Studerus, X. (1979) Secondary flow in an openchannel. Proceedings of 18th IAHR congress, Cagliari, Vol. 3, pp. 19-24.
  16. Nezu, I. and Nakagawa, H. (1984) Cellular secondary currents in straight conduit. Journal of Hydraulic Engineering, ASCE, Vol. 110, No. 2, pp. 173-193. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:2(173)
  17. Nezu, I. and Nakagawa, H. (1984). Turbulence in open-channel flows. IAHR Monograph, A.A. Balkema, The Netherland.
  18. Nezu, I. and Nakayama, T. (1999) Numerical calculation of steep open-channel flows by considering effects of surface wave fluctuations. International Conference of WEESH, Seoul, Korea.
  19. Nezu, I., Tominaga, A., and Nakagawa, H. (1993) Field measurements of secondary currents in straight rivers. Journal of Hydraulic Engineering, ASCE, Vol. 119, No. 5, pp. 598-614. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:5(598)
  20. Nezu I. and Rodi W. (1985) Experimental study on secondary currents in open channel flow. 21st IAHR Congress, Melbourne, Australi, Vol. 2, pp. 19-23.
  21. Ohmoto, T. and Hayashi, S. (2003) Study of generation mechanism of secondary currents in open-channel flow by direct numerical simulation. Journal of Hydroscience and Hydraulic Engineering, Vol. 21, No. 1, pp. 11-21.
  22. Patankar, S.V. (1980) Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Taylor & Francis Group, New York, NY.
  23. Patankar, S.V. and Spalding, D.B. (1972) A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic flows. International Journal of Heat and Mass Transfer, Vol. 15, No. 10, pp. 1787-1806. https://doi.org/10.1016/0017-9310(72)90054-3
  24. Speziale, C.G. (1987) On non-linear k-l and k-$\varepsilon$ models of turbulence. Journal of Fluid Mechanics, Vol. 178, pp. 459-475. https://doi.org/10.1017/S0022112087001319
  25. Vanoni, V.A. (1946) Transportation of suspended sediment by water. Transaction of ASCE, ASCE, Vol. 111, pp. 67-133.
  26. Wang, Z.-Q. and Cheng, N.-S. (2005) Secondary flows over artificial bed strips. Advances in Water Resources, Vol. 28, pp. 441-450. https://doi.org/10.1016/j.advwatres.2004.12.008
  27. Wang, Z.-Q. and Cheng, N.-S. (2006) Time-mean structure of secondary flows in open channel with longitudinal bedforms Advances in Water Resources, Vol. 29, pp. 1634-1649. https://doi.org/10.1016/j.advwatres.2005.12.002