Numerical Analysis for the Characteristic Investigation of Homogenization Techniques Used for Equivalent Material Properties of Functionally Graded Material

기능경사 소재 등가 물성치 예측을 위한 균질화 기법의 특성분석을 위한 수치해석

  • 조진래 (부산대학교 기계공학부) ;
  • 최주형 (부산대학교 기계공학부 대학원) ;
  • 신대섭 (부산대학교 기계공학부 대학원)
  • Published : 2008.02.28

Abstract

Graded layers in which two different constituent particles are mixed are inserted into functionally graded material such that the volume fractions of constituent particles vary continuously and functionally over the entire material domain. The material properties of this dual-phase graded region, which is essential for the numerical analysis of the thermo-mechanical behavior of FGM, have been predicted by traditional homogenization methods. But, these methods are limited to predict the global equivalent material properties of FGMs because the detailed geometry information such as the particel shape and the dispersion structure is not considered. In this context, this study intends to investigate the characteristics of these homogenization methods through the finite element analysis utilizing the discrete micromechanics models of the graded layer, for various volume fractions and external loading conditions.

기능경사 소재(FGM)에는 서로 다른 두 가지 구성입자들이 혼합되어 있는 경사층(graded layer)이 삽입되어, 소재 전 영역에 걸쳐 구성입자의 체적분율이 연속적이고 기능적으로 변화하도록 되어있다. 이러한 이상(dual-phase) 입자복합재의 열 기계적 거동을 해석함에 있어 필수적인 경사층의 물성치는 전통적으로 균질화 기법을 이용하여 예측되었다. 하지만, 이러한 균질화 기법은 구성입자의 형태, 분산구조 등과 같은 상세 형상을 반영하지 못하지 때문에 복합재의 총체적인 등가 물성치 예측에만 국한 되어왔다. 이러한 맥락에서 본 연구에서는 경사층을 미시역학적으로 이산화 모델링하고, 다양한 체적분율과 외부 하중조건에 대해 유한요소해석을 실시하여 이러한 균질화 기법들의 특성을 분석하였다.

Keywords

References

  1. Cho, J. R., Oden, J. T. (2000) Functionally graded material: a parametric study on thermal-stress characteristics using the Crank-Nicolson-Galerkin scheme, Computer Methods in Applied Mechanics and Engineering, 188, pp.17-37 https://doi.org/10.1016/S0045-7825(99)00289-3
  2. Cho, J. R., Ha, D. Y. (2001) Thermo-elastoplastic characteristics of heat-resisting functionally graded composite structures, Structural Engineering and Mechanics, 11(1), pp.49-70 https://doi.org/10.12989/sem.2001.11.1.049
  3. Cho, J. R., Song, J. I., Choi, J. H. (2006) Prediction of effective mechanical properties of reinforced braid by 3-D finite element analysis, Key Engineering Materials, 306-308, pp.799-804 https://doi.org/10.4028/www.scientific.net/KEM.306-308.799
  4. Ghosh, S., Mukhopadhyay, S. N. (1993) A material based finite element analysis of heterogeneous media involving Dirichlet tessellations, Computer Methods in Applied Mechanics and Engineering, 104, pp.211-247 https://doi.org/10.1016/0045-7825(93)90198-7
  5. Giannakopoulos, A. E., Suresh, S., Finot, M., Olsson, M. (1995) Elastoplastic analysis of thermal cycling: layered materials with compositional gradients, Acta Metallurgica et Materialia, 43, pp. 1335-1354 https://doi.org/10.1016/0956-7151(94)00360-T
  6. Grujicic, M., Zhang, Y. (1998) Determination of effective elastic properties of functionally graded materials using Voronoi cell finite element method, Materials Science and Engineering A, 251, pp. 64-76 https://doi.org/10.1016/S0921-5093(98)00647-9
  7. Hashin, Z., Shtrikman, S. (1963) A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids, 11, pp.127-140 https://doi.org/10.1016/0022-5096(63)90060-7
  8. Hill, R. (1963) Elastic properties of reinforced solids : Some theoretical principles, Journal of the Mechanics and Physics of Solids, 11, pp.357-372 https://doi.org/10.1016/0022-5096(63)90036-X
  9. Koizumi, M. (1997) FGM activities in Japan, Composites Part B : Engineering, 28, pp.1-4 https://doi.org/10.1016/S1359-8368(96)00016-9
  10. Lee, J. M., Toi, Y. (2002) Elasto-plastic damage analysis of functionally graded materials subjected to thermal shock and thermal cycle, JSME International Journal Series A, 45(3), pp.331-338 https://doi.org/10.1299/jsmea.45.331
  11. Mori, T., Tanaka, K. (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, 21, pp. 571-574 https://doi.org/10.1016/0001-6160(73)90064-3
  12. Ravichandran, K. S. (1994) Elastic properties of two-phase composites, Journal of the American Ceramic Society, 77, pp.1178-1184 https://doi.org/10.1111/j.1151-2916.1994.tb05390.x
  13. Reiter, T., Dvorak, G. J., Tvergaard, V. (1997) Micromechanical models for graded composite materials, Journal of the Mechanics and Physics of Solids, 45, pp.1281-1302 https://doi.org/10.1016/S0022-5096(97)00007-0
  14. Tomota, Y., Kuroki, K., Mori, T., Tamura, I. (1976), Tensile deformation of two-ductile-phase alloys : Flow curves of $\alpha-\nu$ Fe---Cr---Ni alloys, Materials Science and Engineering, 24, pp.85-94 https://doi.org/10.1016/0025-5416(76)90097-5
  15. Wakashima, K., Tsukamoto, H. (1991) Mean-field micromechanics model and its application to the analysis of thermomechanical behaviour of composite materials, Materials Science and Engineering A, 146, pp.64-76