DOI QR코드

DOI QR Code

Dependence of Thermal Properties on Crystallization Behavior of CaMgSi2O6 Glass-Ceramics

  • Jeon, Chang-Jun (Department of Materials Engineering, Kyonggi University) ;
  • Yeo, Won-Jae (Department of Materials Engineering, Kyonggi University) ;
  • Kim, Eung-Soo (Department of Materials Engineering, Kyonggi University)
  • Published : 2009.12.27

Abstract

The effects of thermal properties on the crystallization behavior of $CaMgSi_2O_6$ glass-ceramics were investigated as a function of sintering temperature from 800$^{\circ}C$ to 900$^{\circ}C$. The crystallization behavior of the specimens depended on the sintering temperature, which could be evaluated from the differential thermal analysis, X-ray diffraction and Fourier transform infrared spectroscopy. With increasing sintering temperature, the thermal conductivity of the sintered specimens increased, while the coefficient of thermal expansion (CTE) of the sintered specimens decreased. These results could be attributed to the increase of crystallization, confirmed from the estimation by density measurements. Also, the thermal diffusivity and specific heat capacity of the sintered specimens were discussed with relation to the sintering temperature. Typically, a thermal conductivity of 3.084 $W/m^{\circ}C$, CTE of 8.049 $ppm/^{\circ}C$, thermal diffusivity of 1.389 $mm^2/s$ and specific heat capacity of 0.752 $J/g^{\circ}C$ were obtained for $CaMgSi_2O_6$ specimens sintered at 900$^{\circ}C$ for 5 h.

Keywords

References

  1. J. H. Lim and S. J. Park, Kor. J. Mater. Res., 19(8), 417 (2009) https://doi.org/10.3740/MRSK.2009.19.8.417
  2. G. H. Chen and X. Y. Liu, J. Alloys Compd., 431, 282 (2007) https://doi.org/10.1016/j.jallcom.2006.05.060
  3. J. H. Kim, S. J. Hwang, W. K. Sung and H. S. Kim, J. Electroceram., 23, 209 (2009) https://doi.org/10.1007/s10832-007-9395-9
  4. A. Goel, D. U. Tulyaganov, S. Agathopoulos, M. J. Ribeiro and J. M. F. Ferreira, J. Eur. Ceram. Soc., 27, 3231 (2007) https://doi.org/10.1016/j.jeurceramsoc.2007.01.018
  5. H. E. Kissinger, Anal. Chem., 29, 1702 (1957) https://doi.org/10.1021/ac60131a045
  6. J. A. Augis and J. E. Bennett, J. Therm. Anal., 13, 283 (1978). https://doi.org/10.1007/BF01912301
  7. F. Branda, A. Costantini and A. Buri, Thermochim. Acta, 217, 207 (1993) https://doi.org/10.1016/0040-6031(93)85109-M
  8. K. Omori, Am. Mineral., 56, 1607 (1971)
  9. A. Goel, E. R. Shaaban, D. U. Tulyaganov and J. M. F. Ferreira, J. Am. Ceram. Soc., 91(8), 2690 (2008) https://doi.org/10.1111/j.1551-2916.2008.02495.x
  10. A. Karamanov, L. Arrizza, I. Matekovits, M. Pelino, Ceram. Int., 30, 2129 (2004) https://doi.org/10.1016/j.ceramint.2003.11.019
  11. A. Karamanov and M. Pelino, J. Eur. Ceram. Soc., 19, 649 (1998) https://doi.org/10.1016/S0955-2219(98)00226-X
  12. R. Knoche, D. B. Dingwell and S. L. Webb, Geochim. Cosmochim. Acta, 56, 689 (1992) https://doi.org/10.1016/0016-7037(92)90090-6
  13. S. N. Salama, H. Darwish and H. A. A. Mosallam, J. Eur. Ceram. Soc., 25, 1133 (2005) https://doi.org/10.1016/j.jeurceramsoc.2004.04.025