DOI QR코드

DOI QR Code

Characteristics of Nickel_Titanium Dual-Metal Schottky Contacts Formed by Over-Etching of Field Oxide on Ni/4H-SiC Field Plate Schottky Diode and Improvement of Process

Ni/4H-SiC Field Plate Schottky 다이오드 제작 시 과도 식각에 의해 형성된 Nickel_Titanium 이중 금속 Schottky 접합 특성과 공정 개선 연구

  • Oh, Myeong-Sook (Department of Materials Science and Engineering, Seoul National University) ;
  • Lee, Jong-Ho (Department of Materials Science and Engineering, Seoul National University) ;
  • Kim, Dae-Hwan (Department of Materials Science and Engineering, Seoul National University) ;
  • Moon, Jeong-Hyun (Department of Materials Science and Engineering, Seoul National University) ;
  • Yim, Jeong-Hyuk (Department of Materials Science and Engineering, Seoul National University) ;
  • Lee, Do-Hyun (Department of Materials Science and Engineering, Seoul National University) ;
  • Kim, Hyeong-Joon (Department of Materials Science and Engineering, Seoul National University)
  • 오명숙 (서울대학교 재료공학부 대학원) ;
  • 이종호 (서울대학교 재료공학부 대학원) ;
  • 김대환 (서울대학교 재료공학부 대학원) ;
  • 문정현 (서울대학교 재료공학부 대학원) ;
  • 임정혁 (서울대학교 재료공학부 대학원) ;
  • 이도현 (서울대학교 재료공학부 대학원) ;
  • 김형준 (서울대학교 재료공학부 대학원)
  • Published : 2009.01.31

Abstract

Silicon carbide (SiC) is a promising material for power device applications due to its wide band gap (3.26 eV for 4H-SiC), high critical electric field and excellent thermal conductivity. The Schottky barrier diode is the representative high-power device that is currently available commercially. A field plate edge-terminated 4H-SiC was fabricated using a lift-off process for opening the Schottky contacts. In this case, Ni/Ti dual-metal contacts were unintentionally formed at the edge of the Schottky contacts and resulted in the degradation of the electrical properties of the diodes. The breakdown voltage and Schottky barrier height (SBH, ${\Phi}_B$) was 107 V and 0.67 eV, respectively. To form homogeneous single-metal Ni/4H-SiC Schottky contacts, a deposition and etching method was employed, and the electrical properties of the diodes were improved. The modified SBDs showed enhanced electrical properties, as witnessed by a breakdown voltage of 635 V, a Schottky barrier height of ${\Phi}_B$=1.48 eV, an ideality factor of n=1.04 (close to one), a forward voltage drop of $V_F$=1.6 V, a specific on resistance of $R_{on}=2.1m{\Omega}-cm^2$ and a power loss of $P_L=79.6Wcm^{-2}$.

Keywords

References

  1. S. Hu and K. Sheng, Solid-State Electron., 48(10), 1861 (2004) https://doi.org/10.1016/j.sse.2004.05.027
  2. A. Itoh, T. Kimoto and H. Matsunami, Proceedings of Intemational Symposium on Power Semiconductor Devices & ICs, (Yokohama, Japan, May 1995), IEEE p. 101
  3. P. G. Neudeck, D. J. Larkin, J. A .Powel1, L. G. Matus and C. S. Salupo, Appl. Phys. Lett., 64(11), 1386 (1994) https://doi.org/10.1063/1.111915
  4. D. Alok, B. J. Baliga and P. K. McLarty, IEEE Electron Device Lett., 15(10), 394, (1994) https://doi.org/10.1109/55.320979
  5. C. E. Weitze1, J. W. Palmour, C. H. Carter, Jr. and K. J. Nordquist, IEEE Electron Device Lett., 15(10), 406, (1994) https://doi.org/10.1109/55.320983
  6. G. Pensl and W. J. Choyke, Physica B, 185(1-4), 264 (1993) https://doi.org/10.1016/0921-4526(93)90249-6
  7. J. M. Bluet, D. Ziane, G. Guillot, D. Tournier, P. Brosselard, J. Montserrat and P. Godignon, Superlattices Microstruct., 40(4-6), 399 (2006) https://doi.org/10.1016/j.spmi.2006.06.012
  8. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed., p.15 , P. Hammond and R. L. Grimsdale, Oxford University Press, New York, USA (1988)
  9. J. P. Sullivan, R. T. Tung, and M. R. Pinto, J. Appl. Phys., 70(12), 7403 (1991) https://doi.org/10.1063/1.349737
  10. J. P. Sullivan, R. T. Tung, and M. R. Pinto, J. Appl. Phys., 70(12), 7403 (1991) https://doi.org/10.1063/1.349737
  11. C. Marc, T. Vipin, P. Madangarli, Q. Zhang and T. S. Sudarshan, IEEE Trans. Electron Devices, 48(12), 2659 (2001) https://doi.org/10.1109/16.974686
  12. V. Khemka, R. Patel, T. P. Chow and R. J. Gutmann, Solid-State Electron., 43(10), 1945 (1999) https://doi.org/10.1016/S0038-1101(99)00155-0
  13. D. W. Kim, Mast. Thesis (in Korean), p. 21-28, Seoul National University, Seoul (2004)
  14. V. Saxena, S. J. Nong and Steckl, IEEE Trans. Electron Devices, 46(3), 456 (1999) https://doi.org/10.1109/16.748862
  15. B.J. Skromme and E. Luckowski, Mater. Sci. Forum, 338(342), 1029 (2000)
  16. J. H. Zhao and K. Sheng, International Journal of High Speed Electronics and Systems, , 15(4), 821 (2005) https://doi.org/10.1142/S0129156405003430