DOI QR코드

DOI QR Code

Effect of Annealing Temperature on the Properties of ITO/Au/ITO Films

  • Chae, Joo-Hyun (Department of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Dae-Il (Department of Materials Science and Engineering, University of Ulsan)
  • Published : 2009.02.27

Abstract

Transparent Sn-doped $In_2O_3$ (ITO) single-layer and ITO/Au/ITO multilayer films were deposited on glass substrates by reactive magnetron sputtering to compare the properties of the films. They were then annealed in a vacuum of $1{\times}10^{-2}\;Pa$ at temperatures ranging from 150 to $450^{\circ}C$ for 20 min to determine the effect of the annealing temperature on the properties of the films. As-deposited 100 nm thick ITO films exhibit a sheet resistance of $130{\Omega}/{\square}$ and optical transmittance of 77% at a wavelength length of 550 nm. By inserting a 5 nm-thick Au layer in ITO/metal/ITO (IMI) films, the sheet resistance was decreased to as low as $20{\Omega}/{\square}$ and the optical transmittance was decreased to as little as 73% at 550 nm. Post-deposition annealing of ITO/Au/ITO films led to considerably lower electrical resistivity and higher optical transparency. In the Xray diffraction pattern, as-deposited ITO films did not show any diffraction peak, whereas as-deposited ITO/ Au/ITO films have Au (222) and $In_2O_3$ (110) crystal planes. When the annealing temperature reached the 150 - $450^{\circ}C$ range, the both diffraction peak intensities increased significantly. A sheet resistance of $8{\Omega}/{\square}$ and an optical transmittance of 82% were obtained from the ITO/Au/ITO films annealed at $450^{\circ}C$.

Keywords

References

  1. D. Kim and S. Kim, Thin Solid Films, 408, 218 (2002) https://doi.org/10.1016/S0040-6090(02)00148-7
  2. B. Yoo, K. Kim, S. Lee, W. Kim and N. Park, Sol. Ener. Maters. and Sol. Cells, 92, 873 (2008) https://doi.org/10.1016/j.solmat.2008.02.013
  3. V. Vaishnav and P. Patel, Thin Solid Film, 490, 94 (2005) https://doi.org/10.1016/j.tsf.2005.04.006
  4. H. Omoto, A. Takamatsu and T. Kobayashi, Vacuum, 80, 783 (2006) https://doi.org/10.1016/j.vacuum.2005.11.031
  5. T. Minami, S. Ida, T. Miyata, Thin Solid Film, 416, 92 (2002) https://doi.org/10.1016/S0040-6090(02)00706-X
  6. M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker and J. Stollenwerk, Thin Solid Films, 326, 72 (1998) https://doi.org/10.1016/S0040-6090(98)00521-5
  7. M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker and J. Stollenwerk, Thin Solid Films, 326, 67 (1998) https://doi.org/10.1016/S0040-6090(98)00520-3
  8. A. Kloppel, W. Riegseis, B. Meyer, A. Charmann, C. Aube, J. Stollenwerk and J. Rube, Thin Solid Films, 365, 139 (2000) https://doi.org/10.1016/S0040-6090(99)00949-9
  9. G. Haacke, J. Appl. Phys, 47, 4086 (1976) https://doi.org/10.1063/1.323240
  10. K. Zhang, F. Zhu, C. H. A. Huan and A. Wee, Thin Solid Film, 376, 255 (2000) https://doi.org/10.1016/S0040-6090(00)01418-8
  11. X. Sun, H. Huang and H. Kwon, Appl. Phys. Lett., 68, 2663 (1996) https://doi.org/10.1063/1.116274
  12. Y. Jung, Y. Choi, H. Lee and D. Lee, Thin Solid Film, 440, 278 (2003) https://doi.org/10.1016/S0040-6090(03)00835-6
  13. H. J. Park, J. H. Chae and D. Kim, Vacuum, 83, 448, (2008) https://doi.org/10.1016/j.vacuum.2008.04.061