DOI QR코드

DOI QR Code

Hepatoprotective Effects of Hovenia dulcis Fruit on Ethanol-Induced Liver Damage in vitro and in vivo

세포 및 동물모델에서의 알코올에 의해 유발된 간손상에 대한 지구자 추출물의 보호효과

  • You, Yang-Hee (Dept. Food and Nutrition, Chonnam National University) ;
  • Jung, Kuk-Yung (Graduate School of Complementary & Alternative Medicine, College of Medicine, Pochon CHA University) ;
  • Lee, Yoo-Hyun (Dept. Food Science and Nutrition, Suwon University) ;
  • Jun, Woo-Jin (Dept. Food and Nutrition, Chonnam National University) ;
  • Lee, Boo-Yong (Graduate School of Complementary & Alternative Medicine, College of Medicine, Pochon CHA University)
  • 유양희 (전남대학교 식품영양학과) ;
  • 정국영 (포천중문의과대학교 대체의학대학원) ;
  • 이유현 (수원대학교 식품영양학과) ;
  • 전우진 (전남대학교 식품영양학과) ;
  • 이부용 (포천중문의과대학교 대체의학대학원)
  • Published : 2009.02.28

Abstract

The hepatoprotective effect of ethanol extract from Hovenia dulcis fruit (HD) against ethanol-induced oxidative damage was investigated. Ethanol-induced reactive oxygen species (ROS) generation and liver damage on HepG2/2E1 cells were protected by $100{\mu}g/mL$ ethanolic extract from HD. Male C57BL/6 mice were divided into 3 groups; control (NC), ethanol (ET), ethanol plus 1 g/kg body weight ethanolic extract of HD (ET-HD). The activities of serum alanine amintransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were significantly increased in ethanol-treated group. However, ET-HD group showed protective effect by lowering serum activities. The ET group markedly decreased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione-s-transferase (GST) with the reduced level of glutathione (GSH) in liver. On the other hand, ET-HD group increased the activities of SOD and GST, and the level of GSH. Lipid peroxidation level, which was increased after ethanol administration, was significantly reduced in ET-HD group. Based upon these results, it could be assumed that ethanolic extract of HD protected the liver against ethanol-induced oxidative damage by possibly inhibiting the suppression of antioxidant activity and reducing the rate of lipid peroxidation in vitro and in vivo. Therefore, extract of Hovenia dulcis fruit might be used as a protective agent for ethanol-induced hepatic damages.

알코올에 의해 유도된 간 손상에 대한 지구자 추출물의 보호효과를 연구하였다. HepG2/2E1 세포에서 알코올로 유도된 ROS 생성과 산화적 손상에 대한 지구자 추출물 보호효과를 확인하였다. C57BL/6마우스를 대조군(NC), 알코올군(ET), 알코올과 지구자 추출물 1 g/kg body weight 투여군(ET-HD)으로 나누었다. 5 g/kg body weight의 알코올을 1주일간 ET와 ET-HD군에 투여하였다. 알코올 투여는 혈청 alanine amintransferase(ALT), aspartate aminotransferase(AST) 및 alkaline phosphatase(ALP)를 증가시키고, 지구자 추출물은 이러한 간 기능 지표효소의 증가를 억제시켰다. 간조직의 항산화 효소 활성은 알코올 투여에 의해 감소되었고, ET-HD군에서 SOD 및 GST 활성은 ET군과 비교하여 통계적으로 유의하게 높아졌다. GSH 함량은 ET군에서 NC군에 비하여 유의적으로 낮아졌고, ET-HD군에서 ET군과 비교하여 통계적으로 유의하게 높아졌으며, NC군과 유사한 함량을 나타내어 간 보호 효과를 확인할 수 있었다. 지질과산화물 함량은 ET-HD군과 NC군이 유사한 함량을 나타냄으로써 알코올에 의해 유도된 지질과산화물 증가에 의한 간손상으로부터 지구자 추출물의 보호 효과를 보여 주었다. 이상의 결과로부터, 지구자 추출물은 세포 및 동물 모델에서 알코올로 유도된 간 손상으로부터 항산화 방어 대사의 증가와 지질과산화율의 감소에 의해 간세포 보호 활성을 나타냄을 확인하였다. 이에 지구자 추출물은 알코올성 간 손상으로부터 보호 효과를 갖는 소재로 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Maher JJ. 1997. Exploring alcohol's effects on liver function. Alcohol Health Research World 21: 5-12
  2. Neuman MG. 2003. Cytokines-central factors in alcoholic liver disease. Alcohol Res Health 27: 307-316
  3. Tuma DJ, Casey CA. 2003. Dangerous by-products of alcohol breakdown-focus on adducts. Alcohol Res Health 27: 285-290
  4. Castillo T, Koop DR, Kamimura S, Triadafilopoulos G, Tsukamoto H. 1992. Role of cytochrome P-450 2E1 in ethanol-, carbon tetrachloride and iron-dependent microsomal lipid peroxidation. Hepatology 16: 992-996 https://doi.org/10.1002/hep.1840160423
  5. Garcia-Ruiz C, Morales A, Ballesta A, Rodes J, Kaplowitz N, Fernandez-Checa JC. 1994. Effect of chronic ethanol feeding on glutathione and functional integrity of mitochondria in periportal and perivenous rat hepatocytes. J Clin Invest 94: 193-201 https://doi.org/10.1172/JCI117306
  6. 이시진. 1982. 본초강목. 인민위생출판사, 북경. p 1845-1846
  7. Kim TJ. 1996. Korean Resources Plants. Seoul National University Press, Seoul. p 72
  8. Yoshikawa M, Murakami T, Ueda T, Matsuda H, Yamahara J, Murakami N. 1996. Bioactive saponins and glycosides. Four methyl-migrated 16,17-seco-dammarane triterpene glycosides from Chinese natural medicine, hoveniae semen seu fructus, the seeds and fruit of Hovenia dulcis Thunb.: absolute stereostructures and inhibitory activity on histamine release of hovenidulciosides A1, A2, B1, and B2. Chem Pharm Bull 44: 1736-1743 https://doi.org/10.1248/cpb.44.1736
  9. Fang HL, Lin HY, Chan MC, Lin WL, Lin WC. 2007. Treatment of chronic liver injuries in mice by oral administration of ethanolic extract of the fruit of Hovenia dulcis. Am J Chin Med 35: 693-703 https://doi.org/10.1142/S0192415X07005181
  10. Ji Y, Li J, Yang P. 2001. Effects of fruits of Hovenia dulcis Thunb on acute alcohol toxicity in mice. Zhong Yao Cai 24: 126-128
  11. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47: 936-942
  12. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-25 https://doi.org/10.1016/0003-2697(76)90527-3
  13. Reitman S, Frankel SA. 1957. Colorimetric method for determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28: 56-63 https://doi.org/10.1093/ajcp/28.1.56
  14. Kind PRN, King EJ. 1954. Estimation of plasma phosphatase by determination of hydrolysed phenol with amino antipyrine. J Clin Path 7: 322-326 https://doi.org/10.1136/jcp.7.4.322
  15. Aebi H. 1984. Catalase in vitro. Methods Enzymol 105: 121-126 https://doi.org/10.1016/S0076-6879(84)05016-3
  16. McCord JM, Fridovich I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049-6055
  17. Habig WH, Jakoby WB. 1981. Assays for differentiation of glutathione S-transferases. Methods Enzymol 77: 398-405 https://doi.org/10.1016/S0076-6879(81)77053-8
  18. Akerboom TP, Sies H. 1981. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77: 373-382 https://doi.org/10.1016/S0076-6879(81)77050-2
  19. Draper HH, Hadley M. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186: 421-431 https://doi.org/10.1016/0076-6879(90)86135-I
  20. Lee YH, Ho JN, Dong MS, Park JH, Kim HK, Hong BS, Shin DH, Cho HY. 2005. Transfected HepG2 cells for evaluation of catechin effects on alcohol-induced CYP2E1 cytotoxicity. J Microbiol Biotechnol 15: 1310-1316
  21. Molander DW, Wroblewsk F, La Due JS. 1955. Transaminase compared with cholinesterase and alkaline phosphatase an index of hepatocellular integrity. Clin Res Proc 3: 20-24
  22. Zimmerman HJ, Seeff LB. 1970. Enzymes in hepatic disease. In Dagnostic Enzymology. Goodley EL, ed. Lea and Febiger Publisher, Philadelphia. p 1-38
  23. Ahn YT, Bae JS, Kim YH, Lim KS, Huh CS. 2005. Effects of fermented milk intake on hepatic antioxidative systems in alcohol treated rats. Korean J Food Sci Technol 37: 631-635
  24. Baudrimont I, Ahouandjivo R, Creppy EE. 1997. Prevention of lipid peroxidation induced by ochratoxin A in vero cells in culture by several agents. Chem Biol Interact 104: 29-40 https://doi.org/10.1016/S0009-2797(97)03764-2
  25. Shim SI, Chung JW, Lee JM, Hwang KT, Sone J, Hong BS, Cho HY, Jun WJ. 2006. Hepatoprotective effects of black rice on superoxide anion radicals in HepG2 cell. Food Sci Biotechnol 15: 993-996
  26. Boyer TD, Bessey DA, Holcomb C, Saley N. 1984. Studies of the relationship between the catalytic activity and binding of nonsubstrate ligands by the glutathione S-transferases. Biochem J 217: 179-185 https://doi.org/10.1042/bj2170179
  27. Mari M, Cederbaum AI. 2001. Induction of catalase, alpha, and microsomal glutathione S-transferase in CYP2E1 overexpressing HepG2 cells and protection against shortterm oxidative stress. Hepatology 33: 652-661 https://doi.org/10.1053/jhep.2001.22521
  28. Ahn TH, Yang YS, Lee JC, Moon CJ, Kim SH, Jun WJ, Park SC, Kim JC. 2007. Ameliorative effects of pycnogenol$^{\textregistered}$ on carbon tetrachloride-induced hepatic oxidative damage in rats. Phytother Res 21: 1015-1019 https://doi.org/10.1002/ptr.2146
  29. Paradis V, Kollinger M, Fabre M, Holstege A, Poynard T, Beddosa P. 1997. In situ detection of lipid peroxidation by-products in chronic liver diseases. Hepatology 26: 135-142 https://doi.org/10.1002/hep.510260118
  30. Veca CE, Wilhelm J, Harms-Rihsdahl M. 1988. Interaction of lipid peroxidation product with DNA. A review. Mutat Res Rev Genet Toxicology 195: 137-149 https://doi.org/10.1016/0165-1110(88)90022-X

Cited by

  1. Modulation of Ethanol-Induced P450 Enzyme Activities and Antioxidants in Mice by Hordeum vulgare Extract vol.38, pp.10, 2009, https://doi.org/10.3746/jkfn.2009.38.10.1347
  2. In Vitro Hepatoprotective Effects of Fermented Curcuma longa L. by Aspergillus oryzae against Alcohol-Induced Oxidative Stress vol.45, pp.6, 2016, https://doi.org/10.3746/jkfn.2016.45.6.812
  3. Hepatoprotective Effect of Curdrania tricuspidata Extracts against Oxidative Damage vol.41, pp.1, 2012, https://doi.org/10.3746/jkfn.2012.41.1.007
  4. Hepatoprotective Effects of Hovenia dulcis Extract on Acute and Chronic Liver Injuries induced by Alcohol and Carbon Tetrachloride vol.28, pp.4, 2013, https://doi.org/10.6116/kjh.2013.28.4.25
  5. A Randomized, Double-blind, Placebo-controlled Study to the efficacy and Safety of NMED-01 and NMED-02 in Mild Alcoholic Liver Subjects vol.28, pp.6, 2013, https://doi.org/10.6116/kjh.2013.28.6.31
  6. Effect of Mixture Including Hot Water Extract of Houttuynia cordata Thunb on Ethanol-Induced Hangover in Rats vol.45, pp.10, 2016, https://doi.org/10.3746/jkfn.2016.45.10.1508
  7. Protective Effects of Crude Mucin and Saponin from Dioscorea Rhizoma on Gastric Ulcer Induced by Alcohol in Rats vol.24, pp.11, 2014, https://doi.org/10.5352/JLS.2014.24.11.1200
  8. Extract Attenuates High-Fat Diet-Induced Hepatic Lipid Accumulation and Hypertriglyceridemia in C57BL/6 Mice pp.1557-7600, 2018, https://doi.org/10.1089/jmf.2018.4224
  9. 두릅 아세트산 에틸 분획물의 산화방지 효과 및 알코올에 대한 간세포 보호효과 vol.50, pp.2, 2018, https://doi.org/10.9721/kjfst.2018.50.2.216
  10. 알코올성 간 손상 조직에서 TGF-β1와 c-Myc, Erb-B2, Thymosin-β4 유전자 발현 융합 연구 vol.9, pp.5, 2009, https://doi.org/10.15207/jkcs.2018.9.5.091
  11. 알코올 유발 간 손상 마우스 모델에서 복합 추출물 MJY2018의 간 보호 및 항산화 효과 vol.28, pp.2, 2009, https://doi.org/10.14374/hfs.2020.28.2.189
  12. Effects of different factors on friable callus induction and establishment of cell suspension culture of Hovenia dulcis (Rhamnaceae) vol.72, pp.None, 2009, https://doi.org/10.1590/2175-7860202172105
  13. Protective Effects of the Methanol Extract from Calyx of Diospyros kaki on Alcohol-Induced Liver Injury vol.50, pp.4, 2009, https://doi.org/10.3746/jkfn.2021.50.4.339