DOI QR코드

DOI QR Code

A Study of Post-processing Methods of Clustering Algorithm and Classification of the Segmented Regions

클러스터링 알고리즘의 후처리 방안과 분할된 영역들의 분류에 대한 연구

  • Published : 2009.02.28

Abstract

Some clustering algorithms have a problem that an image is over-segmented since both the spatial information between the segmented regions is not considered and the number of the clusters is defined in advance. Therefore, they are difficult to be applied to the applicable fields. This paper proposes the new post-processing methods, a reclassification of the inhomogeneous clusters and a region merging using Baysian algorithm, that improve the segmentation results of the clustering algorithms. The inhomogeneous cluster is firstly selected based on variance and between-class distance and it is then reclassified into the other clusters in the reclassification step. This reclassification is repeated until the optimal number determined by the minimum average within-class distance. And the similar regions are merged using Baysian algorithm based on Kullbeck-Leibler distance between the adjacent regions. So we can effectively solve the over-segmentation problem and the result can be applied to the applicable fields. Finally, we design a classification system for the segmented regions to validate the proposed method. The segmented regions are classified by SVM(Support Vector Machine) using the principal colors and the texture information of the segmented regions. In experiment, the proposed method showed the validity for various real-images and was effectively applied to the designed classification system.

클러스터링 알고리즘은 영역들간의 공간정보를 고려하지 않고 사전에 정의된 수만큼의 군집들로 분할하기 때문에 영상의 과분할을 유발하며, 이에 실제적인 응용분야에 적용하기에는 어려움이 존재한다. 본 논문에서는 클러스터링 알고리즘에 의해 획득한 군집들을 대상으로 보다 나은 분할결과를 획득하기 위한 후처리 방안으로, 비동질적인 군집의 재분류와 베이시안 알고리즘에 의한 유사영역의 합병알고리즘을 제안한다. 먼저, 클러스터링 알고리즘에 의해 분할된 영상의 군집들에 대해서 가장 비동질적인 군집을 선택하여 이를 나머지 군집들 중 하나로 재분류하며, 최소평균내부거리값에 의해 결정된 군집수만큼 반복적으로 수행된다. 그리고 여전히 존재하는 유사한 인접영역들을 제거하기 위해서 영역간의 Kullbeck-Leibler 거리값을 기반으로 베이시안 알고리즘을 이용한 영역 합병을 수행한다. 마지막으로, 제안한 방법의 유효함을 검증하기 위한 목적으로, 분할된 영역들의 우세컬러와 텍스처 정보를 기반으로 하는 SVM(support vector machine) 기반 영역분류시스템을 설계한다. 실험결과, 제안한 방법은 다양한 실험영상들에 대해서 단계별 더 나은 성능을 보였으며, 분할된 영역들의 분류에서도 효과적인 결과를 보여 제안방법의 유효함을 확인하였다.

Keywords

References

  1. M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quantitative performance evaluation,” Journal of Electronic Imaging, Vol.13, No.1, pp.146-165, January 2004 https://doi.org/10.1117/1.1631315
  2. N. Pal and J. Bezdek, “On cluster validity for the fuzzy c-means model,” IEEE Trans. Fuzzy Syst., Vol.3, No.3, pp.370-379, August 1995 https://doi.org/10.1109/91.413225
  3. D. L. Pham, “Fuzzy clustering with spatial constraints,” Proc. of IEEE Conf. on Image Process., Vol.2, pp.65-68, September 2002 https://doi.org/10.1109/ICIP.2002.1039888
  4. Y. Yang, C. Zheng and P. Lin, “Image thresholding based on spatially weighted fuzzy c-means clustering,” Proc. of IEEE Conf. on Computer and Information Technology, pp.184-189, September 2004 https://doi.org/10.1109/CIT.2004.1357194
  5. J. T. Oh, H. W. Kwak, Y. H. Sohn and W. H. Kim, “Multilevel thresholding using entropy-based weighted FCM algorithm in color image,” LNCS 3804, pp.437-444, 2005 https://doi.org/10.1007/11595755_53
  6. N. Otsu, “A threshold selection method from gray level histograms,” IEEE Trans. Syst. Man Cybern. Vol.9, No.1, pp.62-66, 1979 https://doi.org/10.1109/TSMC.1979.4310076
  7. Y. Du, C. Chang and P. D. Thouin, “Unsupervised approach to color video thresholding,” Opt. Eng. Vol.32, No.2, pp.282-289, 2004 https://doi.org/10.1117/1.1637364
  8. W. Yang, L. Guo, T. Zhao and G. Xiao, “Improving watersheds image segmentation method with graph theory,” IEEE Conference on Industrial Electronics and Applications, pp.2550-2553, 2007 https://doi.org/10.1109/ICIEA.2007.4318872
  9. W. Tao, H. Jin and Y. Zhang, “Color image segmentation based on mean shift and normalized cuts,” IEEE Trans. Syst. Man Cybern.-Part B:Cybernetics, Vol.37, No.5, pp.1382-1389, October 2007 https://doi.org/10.1109/TSMCB.2007.902249
  10. J. C. Platt, “Sequential minimal optimization : A fast algorithm for training support vector machines,” Microsoft Research Technical Report MSR-TR-98-14, 1998
  11. J. C. Platt, “Fast training of SVMs using sequential minimal optimization,” Advances in Kernel Methods : Support Vector Learning, MIT Press, pp.185-208, 1999
  12. M. Borsotti, P. Campadelli and R. Schettini, “Quantitative evaluation of color image segmentation results,” Patt. Recogn. Lett. Vol.19, No.8, pp.741-747, June 1998 https://doi.org/10.1016/S0167-8655(98)00052-X