Abstract
Ant Colony System is new meta heuristic for hard combinatorial optimization problem. The original ant colony system accomplishes a pheromone updating about only the global optimal path using global updating rule. But, If the global optimal path is not searched until the end condition is satisfied, only pheromone evaporation happens to no matter how a lot of iteration accomplishment. In this paper, the length of the global optimal path does not improved within the limited iterations, we evaluates this state that fall into the local optimum and selects the next node using changed parameters in the state transition rule. This method has effectiveness of the search for a path through diversifications is enhanced by decreasing the value of parameter of the state transition rules for the select of next node, and escape from the local optima is possible. Finally, the performance of Best and Average_Best of proposed algorithm outperforms original ACS.
개미 집단 시스템은 조합 최적화 문제를 해결하기 위한 메타 휴리스틱 탐색 방법이다. 기존 개미 집단시스템은 전역갱신과정에서 탐색된 전역 최적 경로에 대해서만 페로몬 갱신을 수행하는데, 전역 최적 경로가 탐색되지 않으면 페로몬 증발만 일어나며 주어진 종료 조건을 만족할 때까지 아무리 많은 반복 수행에도 페로몬 강화가 일어나지 않는다. 본 논문에서 제안된 개선된 개미 집단시스템은 전역 최적 경로의 길이가 주어진 반복 사이클 횟수 동안 더 이상 향상되지 못하면 국부최적에 빠졌다고 평가하고 상태전이 규칙에서 파라미터 감소를 통해 다음 노드를 선택하게 하였다. 이로 인해, 상태전이 규칙에서 파라미터 감소에 의한 다양화 전략으로 탐색하는 결과가 최적 경로 탐색뿐만 아니라, 평균 최적 경로 탐색과 평균 반복횟수의 성능이 우수함을 보여 주었으며, 실험을 통해 그 성능을 평가하였다.