미생물 및 생화학적 질량역적분석에 의한 퇴비화단계별 부숙도 평가

Assessment of Compost Maturity on Their Different Stages with Microbial and Biochemical Mass Dynamics

  • ;
  • 최홍림 (서울대학교 농생명공학부 동물생명공학전공) ;
  • ;
  • Suresh, Arumuganainar (Department of Agriculture Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Hong Lim (Department of Agriculture Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Yao, Hongqing (Department of Agriculture Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Zhu, Kun (Department of Agriculture Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2009.09.03
  • 심사 : 2009.10.01
  • 발행 : 2009.12.31

초록

유기물의 퇴비화과정중 미생물과 이에 관련된 퇴비의 생화학적 질량의 변화는 퇴비화공정 최적화와 최종산물의 품질은 매우 중요하다. 본 연구에서는 퇴비화단계중 미생물과 관련 생화학적 변수의 질량변화가 퇴비부숙도의 기준으로서의 적합성을 평가하였다. 전국 5개 퇴비공장 (용인축협, 양평축협, 논산축협, 전주연초, 지리산낙협)에서 세 단계 (초기, 부숙, 후숙)의 퇴비시료를 채취하여, Total Aerobic Bacteria(TAB), Coliforms, Escherichia coli, Actinomycetes, Fungi 등의 군집농도를 분석하였다. 연구결과, 5개 퇴비공장의 시료에서 Coliforms과 E.coli는 부숙단계에서 급격히 감소되어 후숙단계에서는 완전 사멸되었으나 다른 미생물은 완전 사멸되지 않았다. 그러므로 Coliforms과 E.coli 군집을 부숙도의 기준으로 제시하였다. 미생물탄소질량/질소질량비 (MBC/MBN)는 부숙단계에서 약간 감소하였으며, 후숙 단계에서는 증가하였다. 이는 부숙단계에서 Coliforms, E. coli, Fungi 등의 군집감소 때문으로, 후숙단계에서는 Fungi 및 TAB 군집증가 때문으로 이해된다. 또한 중금속성분 농도는 방선균 군집과 매우 강한 음(陰)의 상관성을 나타내었다. 본 연구의 성과는 Coliforms과 E.coli 군집 농도를 퇴비부숙도 기준으로 제시하였으며, 중금속농도와 미생물군집농도 상관관계를 이용하여 퇴비품질의 평가기준을 제시한 데 있다.

Microbial and related biochemical mass of composts are important for optimization of its process and end-products. This study was carried out to assess the specific microbial and related biochemical mass which could be used as an indicator for compost maturity during composting stages. The samples from five compost plants were collected at three stages (Initial, Thermophilic and Mature) and analyzed for total aerobic bacteria (TAB), Coliforms, Escherichia coli, Actinomycetes and fungi. Significantly, the coliforms and E.coli counts decreased during the thermophilic stage and were completely eliminated during mature stage. However, the other microbial mass were completely eliminated during mature stage. Which disclosed that Coliforms and E.coli communities can be used as compost maturity indicator. Interestingly, the microbial biomass carbon and nitrogen ratio (MBC/MBN) were decreased a little during the thermophilic stage due to the decreasing number of coliforms, Ecoli and fungi, while the ratio increased during the mature stage due to increasing fungal and aerobic bacterial counts. In addition the heavy metals were shown strong negative correlation with Actenomycetes. This study provides insight to the evaluation of compost maturity as well as the quality by the metal-microbial interactions.

키워드

참고문헌

  1. Rynk. R., Van de Karnp., Wilson. G.B., Sinaley. M.E., Richard. T.L., Kolega. J.L., Gouin. F.R., and Laliberty. L., "On Farm Composting Handbook", Cornell University. New York. (1992).
  2. Borken. W., Muhs. A., and Reese. F., "Changes in microbial and soil properties following compost treatment of degraded temperate forest soils", Soil BioI. Biochem., 34. pp. 403-412 (2002). https://doi.org/10.1016/S0038-0717(01)00201-2
  3. Epstein, E., "Basic concepts in The Science of Composting" Technomic Publishing Company. Lancaster. Pennsylvania. pp. 36-39 (1997).
  4. Butler. T.A., Sikora. L.J., Steinhilber, P.M., and Douglass. L.W., "Compost age and sample storage effects on maturity indicators of biosolids compost". J. Environ. Qual., 30. pp. 2141-2148 (2001). https://doi.org/10.2134/jeq2001.2141
  5. Liang. C., Das. K.C., and McClendon. R.W., "The influence of temperature and moisture content regimes on the aerobic microbial activity of a biosolids composting blends". Bioresour. Technol., 86, pp. 131-137 (2003). https://doi.org/10.1016/S0960-8524(02)00153-0
  6. Tiquia. S.M., Tam. N.F.Y., and Hodgkiss. I.J., "Microbial activities during composting of spent pig-manure sawdust litter at different moisture contents". Bioresour. Technol., 55, PP. 201-206 (1996). https://doi.org/10.1016/0960-8524(95)00195-6
  7. Tiquia, S.M., Wan, J.H.C., and Tam. N.F.Y., "Microbial population dynamics and enzyme activities during composting". Compost Sci. Util., 10. pp. 150-161(2002). https://doi.org/10.1080/1065657X.2002.10702075
  8. Day, M., Krzymien. M., Shaw. K., Zaremba. L., wilson. W.K., Botnen. C., and Thomas. B., "Investigation of chemical and physical changes occurring during commercial composting". Compost Sci. util., 6, pp. 44-46 (1998). https://doi.org/10.1080/1065657X.1998.10701920
  9. Jedidi. N., Hassen. A., Van Cleemput., O., and M'hiri. A., "Microbial biomass in soil amended with different types of organic wastes". Waste Manage. Res., 22. pp. 1-7. (2004).
  10. Greenway. G.M., and Song, Q.J., "Heavy metal speciation in the composting process", J. Environ. Monit., 4, pp. 300-305 (2002). https://doi.org/10.1039/b110608m
  11. Tiquia. S.M., "Microbiological parameters as indicators of compost maturity", J. Appl. Microbiol., 99, pp. 816-828(2005). https://doi.org/10.1111/j.1365-2672.2005.02673.x
  12. Ryckeboer. J., Mergaert.J., Coosemans. J., Deprins. K., and Swings. J., "Microbiological aspects of biowaste during composting in a monitored compost bin". J. Appl. Microbiol., 94. pp. 127-137 (2003). https://doi.org/10.1046/j.1365-2672.2003.01800.x
  13. Brooks, P.C., Landman. A., Pruden. G., and Jenkinson. D.S., "Chloroform fumigation and the release of soil nitrogen: A rapid extraction method to measure microbial biomass nitrogen". Soil BioI. Biochem., 17, pp. 837-842(1985). https://doi.org/10.1016/0038-0717(85)90144-0
  14. Vance. E.D., Brookes. P.C., and Jenkinson. D.S., "An extraction method for measuring soil microbial biomass C", Soil Biol. Biochem., 19, pp. 703-707 (1987). https://doi.org/10.1016/0038-0717(87)90052-6
  15. APHA. AWWA. WEF. "Standard methods for the examination of water and wastewater". 21st ed. American Public Health Association. Washington DC. USA. (2005).
  16. SPSS. "Sterna Plot for Windows". Ver 13.0. SPSS. Inc., Chicago. III. (2004).
  17. Atkinson. C.F., Jones. D.D., and Gauthier. J.J., "Biodegradability and microbial activities during composting of poultry litter", Poult. Sci., 75, pp. 608-617 (1996). https://doi.org/10.3382/ps.0750608
  18. lnsam. H., Amor. K., Rener, M., and Crepaz., "Changes in functional abilities of the microbial community during composting of manure". Microb. Ecol. 31. pp. 77-87 (1996).
  19. Hellmann. B., Zelles. L., Palojarvi. A., and Quingyun. B., "Emission of climate-relevant trace gases and succession of microbial communities during open-window composting". Appl. Environ. Microbiol., 63, pp. 1011-1018 (1997).
  20. Klamer. M., and Baath. E., "Microbial community dynamics during composting of straw material studied using phospholipids fatty acid analysis". FEMS Microbiol. Ecol., 27. pp. 9-20(1998). https://doi.org/10.1111/j.1574-6941.1998.tb00521.x
  21. Ayed, L.B., Hassen, A., Jedidi, N., Saidi, N., Bouaiane, O., and Murano, F., "Microbial C and N dynamics during composting process of urban solid waste". Waste Manage. Res., 25. pp. 24-29 (2007). https://doi.org/10.1177/0734242X07073783
  22. Gattinger. A., Bausenwein. U., and Bruns. C., "Microbial biomass and activity in compost of different composition and age". J. Plant Nutr. Soil Sci., 167. pp. 556-561 (2004). https://doi.org/10.1002/jpln.200421342
  23. Miller. F.C., "Composting as a process based on the control of ecologically selective factors". In Metting Jr. F.Z(ed.), Soil Microbial Ecology. Applications in Agriculture and Management. Dekker. New York. pp. 515-544 (1991).
  24. MFA., "Ministry of Agriculture and Fishery", Official fertilizer standards. Korea. (2002).
  25. Golueke. C.G., "Bacteriology of composting". Biocycle., 33, pp. 55-57 (1992).
  26. Zucconi. F., Forte. M., Monaco. A., and De Bertoldi. M., "Biological evaluation of compost maturity". Biocycle., 22. pp. 27-29 (1981).
  27. Hue. N.V., and Liu. J., "Predicting compost maturity". Compost Sci. Util., 3. pp. 8-15 (1995). https://doi.org/10.1080/1065657X.1995.10701777
  28. Hanajima. D., K. Kuroda. Y. Fukumoto. and K. Haga., "Growth of seeded Escherichia coli in rewetted cattle waste compost of different stages". Asian-Aust. J. Anim. Sci. 17. 278-282 (2004). https://doi.org/10.5713/ajas.2004.278
  29. De Bertoldi. M., Vallini. G., and Pera. A.M., "The biology of composting: A review". Waste Manage. Res., 1. pp. 157-176 (1983). https://doi.org/10.1177/0734242X8300100118