지렁이의 Gycosyl hydrolasse family 유전자들의 동정과 특성에 관한 연구

Identification and Characterization of Glycosyl hydrolase family genes from the Earthworm

  • 투고 : 2009.09.20
  • 심사 : 2009.12.29
  • 발행 : 2009.12.31

초록

Glycosyl hydrolase(GH, EC 3.2.1.-)는 둘 또는 그 이상의 탄수화물 및 탄수화물과 비탄수화물 부분사이의 글리코시딕 결합(glycosidic bond)을 가수분해하는 효소이다. GH에 대한 새로운 분류법은 효소들의 아미노산 서열의 유사성과 구조적인 특징에 기초를 두고 있다. 본 논문에서는 CAZy 데이터베이스를 통하여 총 115종에 이르는 GHF 유전자 중에서 지렁이로부터 12종의 GHF 유전자를 동정하였다. 이 중 산업적 응용가능성이 높은 5종의 유전자(GHF2, 5, 17, 18, 20)를 선택하여 다른 동물종에서 보고된 유전자와 비교분석하였다. 그 결과 지렁이 GHF 유전자들은 동종의 다른 유전자들과 높은 아미노산서열 상동성을 나타냈으며 활성부위 등의 주요 아미노산 잔기가 잘 보존되어 있었다. 이들 유전자들은 해충방제제, 식품가공업, 의학적 치료제 및 유기성폐기물 처리 등에 활용할 수 있을 것으로 사료된다.

Glycosyl hydrolases (GH, EC 3.2.1.-) are key enzymes which can hydrolyze the glycosidic bonds between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. The new enzyme nomenclature of glycoside hydrolases is based on their amino acid sequence similarity and structural features. Here, we examined the glycosyl hydrolase family(GHF) genes reported from earthworm species. Among overall 115 GHFs, 12 GHFs could be identified from earthworm species through CAZy database. Of 12 GHF group genes, five genes including GHF2, 5, 17, 18, 20 are thought to be potent for industrial applications. The alignment of these genes with same genes from other animal species exhibited high sequence homology and some important amino acid residues necessary for enzyme activity appeared to be conserved. These genes can be utilized as a pest control agent or applicable to the food industry, clinical therapeutics and organic wastes disposition.

키워드

참고문헌

  1. Henrissat, B., "A classification of glycosyl hydrolases based on amino acid sequence similarties". Biochem. J., 280(2). pp. 309-316 (1991). https://doi.org/10.1042/bj2800309
  2. Henrissat. B., and Bairoch. A., "New families in the classification of glycosyl hydrolases based on amino acid sequence similarities". Biochem J., 293(3). pp. 781-788 (1993). https://doi.org/10.1042/bj2930781
  3. Davies. G., and Henrissat, B., "Structures and mechanisms of glycosyl hydrolases". Structure., 3(9). pp 853-859(1995). https://doi.org/10.1016/S0969-2126(01)00220-9
  4. Henrissat. B., and Bairoch. A., "Updating the sequence-based classification of glycosyl hydrolases", Biochem. J., 316(2), pp. 695-696 (1996). https://doi.org/10.1042/bj3160695
  5. Kajimoto, T., and Node, M., "Inhibitors against glycosidases as medicines", Curr. Top. Med. Chem., 9(1), pp. 13-33 (2009). https://doi.org/10.2174/156802609787354333
  6. Li. L.L., McCorkle, S.R., Monchy. S., Taghavi. S., and van der Lelie. D., "Bioprospecting metagenomes: glycosyl hydrolases for converting biomass". Biotechnol. Biofuels., 18. pp. 2-10 (2009).
  7. Lavelle, P., and Martin. A., "Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soil of the humid tropics". Soil BioI. Biochem., 24. pp. 1491-1498(1992). https://doi.org/10.1016/0038-0717(92)90138-N
  8. Kaushal. B.R., Bisht. S.B., and Kalia. S., "Effect of diet on cast production by the megascolecid earthworm Amynthas alexandri in laboratory culture", Biol. Fertil. Soils. 17(1). pp. 14-17 (1994). https://doi.org/10.1007/BF00418665
  9. Chan. K.Y., and Heenan. D.P., "Surface hydraulic properties of a red earth under continuous cropping with different management practices". Aust. J. Soil Res., 31(1). pp. 13-24 (1993) https://doi.org/10.1071/SR9930013
  10. Oades J.M., "The role of biology in the formation. stabilizatjon and degradation of soil structure". Geoderma, 56. pp. 377-400 (1993). https://doi.org/10.1016/0016-7061(93)90123-3
  11. Edwards. C.A., and Lofty, J.R., "Effects of earthworm inoculation upon the root growth of direct drilled cereals". J. Appl. Ecol., 17, pp. 533-543 (1980). https://doi.org/10.2307/2402635
  12. Stockdill. S.M.J., "Effect of introduced earthworms on the productivity of New Zealand pastures", Pedobiologia, 24, pp. 29-33 (1982).
  13. Butt, K. R., "Utilization of solid paper mill sludge end spent brewery yeast as a feed for soil-dwelling earthworms". Bioresource Technol., 44, pp. 105-107(1993). https://doi.org/10.1016/0960-8524(93)90182-B
  14. Banu. J.R., Logakanthi, S., and Vijayalakshmi, G.S., "Biomanagement of paper mill sludge using an indegenous (Lampito mauritii) and two exotic(Eudrilus eugineae and Eisenia foetida) earthworms". J. Environ. BioI., 22(3), pp. 181-185 (2001).
  15. Nogales, R., Elvira. C., Beritez. E., Thompson, R., and Gomez. M., "Feasibility of vermicomposting dairy biosolids using a modified system to avoid earthworm mortality". J. Environ. Sci. Health B., 34(1), pp. 151-169 (1999). https://doi.org/10.1080/03601239909373189
  16. Khwairakpam. M., and Bhargava, R., "Vermitechnology for sewage sludge recycling". J. Hazard Mater., 161(2-3). pp. 948-954 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.088
  17. Millott, N., "The visceral nerves of the earthworm. 3. Nerves controlling secretion of protease in the anterior intestine", Proc. R. Soc., 132, pp. 200-212(1944). https://doi.org/10.1098/rspb.1944.0012
  18. Edwards. C.A., and Fletcher. K.E., "Interactions between earthworms and microorganisms in organic-matter breakdown". Agric. Ecosyst. Environ., 24, pp. 235-247 (1988). https://doi.org/10.1016/0167-8809(88)90069-2
  19. Tillinghast, E.K., O'Donnell. R., Eves. D., Calvert, E., and Taylor. J., "Water-soluble luminal contents of the gut of the earthworm Lumbricus terrestris L. and their physiological significance". Comp. Biochem. Physiol. A Mol. Integr. Physiol., 129(2-3), pp. 345-353 (2001). https://doi.org/10.1016/S1095-6433(00)00352-4
  20. Lee, M.S., Cho. S.J., Tak. E.S., Lee. J.A., Cho. H.J., Park. B.J., Shin, C., Kim D.K., and Park. S.C., "Transcriptome analysis in the midgut of the earthworm (Eisenia andrei) using expressed sequence tags". Biochem. Biophys. Res. Commun., 328(4), pp. 1196-1204 (2005). https://doi.org/10.1016/j.bbrc.2005.01.079
  21. Pirooznia. M., Gong, P., Guan. X., Inouye. L.S., Yang, K., Perkins. E.J., and Deng. Y., "Cloning. analysis and functional annotation of expressed sequence tags from the Earthworm Eisenia fetida". BMC Bioinformatics., 8(Suppl 7). S7 (2007).
  22. Owen. J., Hedley, B.A., Svendsen. C., Wren. J., Jonker. M.J., Hankard, P.K., Lister. L,J., Sturzenbaum. S.R., Morgan. A.J., Spurgeon. D.J., Blaxter. M.L., and Kille. P., "Transcriptome profiling of developmental and xenobiotic responses in a keystone soil animal, the oligochaete annelid Lumbricus rubellus". BMC Genomics. 9, pp. 266 (2008). https://doi.org/10.1186/1471-2164-9-266
  23. Joskova. R., Silerova. M., Prochazkova. P., and Bilej. M., "Identification and cloning of an invertebrate-type lysozyme from Eisenia andrei". Dev. Camp. Immunol., 33(8). pp. 932-938 (2009). https://doi.org/10.1016/j.dci.2009.03.002
  24. Beschin. A., Bilej, M., Hanssens. F., Raymakers. J., Van Dyck. E., Revets. H., Brys, L., Gomez. J., De Baetselier. P., and Timmermans. M., "ldentification and cloning of a glucan- and lipopolysaccharide-binding protein from Eisenia foetida earthworm involved in the activation of prophenoloxidase cascade". J. BioI. Chem., 273(38), pp. 24948-24954 (1998). https://doi.org/10.1074/jbc.273.38.24948
  25. Bilej. M., De Baetselier. P., Van Dijck, E., Stijlemans. B., Colige. A., and Beschin. A., "Distinct carbohydrate recognition domains of an invertebrate defense molecule recognize Gram-negative and Gram-positive bacteria". J. BioI. Chem. 276(49). pp. 45840-45847 (2001). https://doi.org/10.1074/jbc.M107220200
  26. Silerova. M., Prochazkova, P., Joskova. R., Josens. G., Beschin. A., De Baetselier. P., and Bilej. M., "Comparative study of the CCF-like pattern recognition protein in different Lumbricid species". Dev. Comp. Immunol., 30(9). pp. 765-771 (2006). https://doi.org/10.1016/j.dci.2005.11.002
  27. 이명식, 박상길, 탁은식, 안치현, 김혜령, 박순철. "지렁이 중장에서 발현되는 endo-$\beta$-1,4-glucanase 유전자들의 클로닝과 특성에 관한 연구". 유기물자원화. 15(3). pp.80-89 (2007).
  28. 백남숙, 이명식, 박상길, 김대환, 탁은식, 안치현, Zhen Jun Sun, 박순철. "줄지렁이 중장에서 분리한 Coelomic cytolytic factor-유사 유전자의 클로닝 및 염기서열 분석에 관한 연구". 유기물자원화. 16 (4 ). pp.64-73 (2008).
  29. Kurokawa. T., Uji, S., and Suzuki. T., "Molecular cloning of multiple chitinase genes in Japanese flounder. Paralichthys olivaceus". Comp. Biochem. Physiol. B. Biochem. Mol. BioI. 138(3). pp. 255-264 (2004). https://doi.org/10.1016/j.cbpc.2004.03.015
  30. Suzuki. M., Fujimoto. W., Goto. M., Morimatsu. M., Syuto. B., and Iwanasa. T. "Cellular expression of gut chitinase mRNA in the gastrointestinal tract of mice and chickens". J. Histochem. Cytochem. 50(8). pp. 1081-1089 (2002). https://doi.org/10.1177/002215540205000810
  31. Koyanagi. R., and Honegger, T.G., "Molecular cloning and sequence analysis of an ascidian egg beta-N-acetylhexosaminldase with a potential role in fertilization". Dev. Growth Differ. 45(3), pp. 209-218 (2003). https://doi.org/10.1046/j.1524-4725.2003.689.x
  32. Muldoon, L.L., Neuwelt, E.A., Pagel, M.A., and Weiss. D.L.,. "Characterization of the molecular defect in a feline model for type II GM2-gangliosidosis (Sandhoff disease)". Am. J. Pathol. 144(5). pp.1109 -1118 (1994).
  33. Bapat, B., Ethier. M., Neote. K., Mahuran, D., and Gravel. R.A., "Cloning and sequence analysis of a cDNA encoding the beta-subunit of mouse bete-hexosaminidase". FEBS Lett. 237(1-2) pp. 191-195 (1988). https://doi.org/10.1016/0014-5793(88)80199-6
  34. Alkhayat, A.H., Kraemer, S.A., Leipprandt. J.R., Macek. M., Kleijer, W.J., and Friderici, K.H., "Human beta-mannosidase cDNA characterization and first identification of a mutation associated with human beta- mannosidosis". Hum. Mol. Genet. 7(1), pp. 75-83 (1998). https://doi.org/10.1093/hmg/7.1.75
  35. Beccari. T., Bibi. L., Stinchi. S., Stirling. J.L., and Orlacchio. A., "Mouse beta-mannosidase: cDNA cloning, expression. and chromosomal localization". Biosci. Rep. 21(3), pp.315-323 (2001). https://doi.org/10.1023/A:1013286216030
  36. zavalova. L., Lukyanov, S., Baskova, I., Snezhkov. E., Akopov. S., Berezhnoy. S., Bogdanova. E., Barsova. E., and Sverdlov, E.D. "Genes from the medicinal leech (Hirudo medicinalis) coding for unusual enzymes that specifically cleave endo-epsilon (gamma-Glu)-Lys isopeptide bonds and help to dissolve blood clots". Mol. Gen. Genet., 253(1-2), pp. 20-25 (1996). https://doi.org/10.1007/s004380050291
  37. Bachali. S., Jager, M., Hassanin. A., Schoentgen, F., Jolles. P., Fiala-Medioni. A., and Deutsch. J.S. "Phylogenetic analysis of invertebrate lysozymes and the evolution of lysozyme function", J. Mol. Evol., 54(5), pp. 652-664 (2002). https://doi.org/10.1007/s00239-001-0061-6
  38. Zhang F., Su K., Yang X., Bowe D., Paterson A., Kudlow J. "O-GlcNAc Modification Is an Endogenous Inhibitor of the Proteasome" Cell, 115:6 715-725(2003). https://doi.org/10.1016/S0092-8674(03)00974-7