Topical Delivery of Budesonide Emulsion Particles in the Presence of PEO-PCL-PEO Triblock Copolymers

  • Cho, Jin-Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Baek, Hyon-Ho (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Jung-Min (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jung-Hyun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Dae-Duk (College of Pharmacy, Seoul National University) ;
  • Cho, Heui-Kyoung (Department of Applied Chemistry, Kyungpook National University) ;
  • Cheong, In-Woo (Department of Applied Chemistry, Kyungpook National University)
  • Published : 2009.12.25

Abstract

This article describes the topical delivery and localization of budesonide through the hairless mouse skin. Two poly(ethylene oxide)-block-poly($\varepsilon$-caprolactone)-block-poly(ethylene oxide) (PEO-PCL-PEO) triblock copolymers (T 222 and T 252) having different CL:EO ratios were added in the preparation of budesonide particles stabilized with poly(vinyl alcohol) (PVA) and Tween 80 under ultrasonication. For comparison, a commercial PEO-PPO-PEO triblock copolymer (F68) was studied under the same condition. To demonstrate the effects of the triblock copolymer, the particle size of budesonide emulsion, entrapment efficiency, and in vitro release were measured and compared. The budesonide particles stabilized by the triblock copolymers had a diameter of ca. 350 nm with entrapment efficiencies of 66-76%. The In vitro release profiles of all samples showed an initial burst followed by sustained release. The skin penetration and permeation of budesonide were analyzed by using a Frantz diffusion cell. T 222 and T 252 exhibited higher total permeation amounts, but lower budesonide penetration amounts, than F68. The results suggest that the partitioning of budesonide in each skin layer can be adjusted in order to avoid skin thinning and negative immune response arising from the penetration of budesonide in blood vessels.

Keywords

References

  1. S. Zhou, X. Deng, and H. Yang, Biomaterials, 24, 3563 (2003) https://doi.org/10.1016/S0142-9612(03)00207-2
  2. Y. Dong and S. S. Feng, Biomaterials, 25, 2843 (2004) https://doi.org/10.1016/j.biomaterials.2003.09.055
  3. A. Mukerjee, V. R. Sinha, and V. Pruthi, J. Biomed. & Pharma. Eng., 1, 40 (2007)
  4. K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni, and W. E. Rudzinski, J. Control. Release, 70, 1 (2001) https://doi.org/10.1016/S0168-3659(00)00339-4
  5. S. Y. Kim, S. H. Cho, Y. M. Lee, and L.-Y. Chu, Macromol. Res., 15, 646 (2007) https://doi.org/10.1007/BF03218945
  6. C. M. Lee, H. J. Jeong, and J. W. Park, Macromol. Res., 16, 682 (2008) https://doi.org/10.1007/BF03218581
  7. J. Y. Lee, E. C. Cho, and K. W. Cho, J. Control. Release, 94, 323 (2004) https://doi.org/10.1016/j.jconrel.2003.10.012
  8. K. Letchford and H. Burt, Eur. J. Pharm. Biopharm., 65, 259 (2007) https://doi.org/10.1016/j.ejpb.2006.11.009
  9. J. A. Kim, S. Y. Choi, K. M. Kim, D. H. Go, H. S. Park, C. H. Lee, and H. M. Park, Macromol. Res., 15, 337 (2007) https://doi.org/10.1007/BF03218796
  10. X. Y. Xiong, K. C. Tam, and L. H. Gan, Macromolecules, 36, 9979 (2003) https://doi.org/10.1021/ma035292d
  11. J. W. Lee, F. J. Hua, and D. S. Lee, J. Control. Release, 73, 315 (2001) https://doi.org/10.1016/S0168-3659(01)00297-8
  12. M. J. Hwang, J. M. Suh, Y. H. Bae, S. W. Kim, and B. Jeong, Biomacromolecules, 6, 885 (2005) https://doi.org/10.1021/bm049347a
  13. C. Y. Gong, Z. Y. Qian, C. B. Liu, M. J. Huang, Y. C. Gu, Y. J. Wen, B. Kan, K. Wang, M. Dai, X. Y. Li, M. L. Gou, M. J. Tu, and Y. Q. Wei, Smart Mater. Struct., 16, 927 (2007) https://doi.org/10.1088/0964-1726/16/3/043
  14. Y. Zhang and R. X. Zhuo, Biomaterials, 26, 6736 (2005) https://doi.org/10.1016/j.biomaterials.2005.03.045
  15. H. K. Cho, J. H. Cho, and I. W. Cheong, Micromol. Symp., 96 (2007)
  16. D. H. Kim, Y. S. Ko, and Y. K. Kwon, Macromol. Res., 16, 62 (2008) https://doi.org/10.1007/BF03218962
  17. S. J. Szefler, J. Allergy Clin. Immun., 104, S175 (1999) https://doi.org/10.1016/S0091-6749(99)70059-X
  18. K. Kis, L. Bodai, H. Polyanka, K. Eder, A. Pivarcsi, E. Duda, G. Soos, Z. Bata-Csorgo, and L. Kemeny, Inter. Immunopharmacology, 6, 358 (2006) https://doi.org/10.1016/j.intimp.2005.08.022
  19. H. Schacke, W. D. Docke, and K. Asadullah, Pharmacol. Therapeut., 96, 23 (2002) https://doi.org/10.1016/S0163-7258(02)00297-8
  20. J. S. Park and Y. W. Cho, Macromol. Res., 15, 513 (2007) https://doi.org/10.1007/BF03218824
  21. J. W. Shim, H. S. Kang, W. S. Park, S. H. Han, J. O. Kim, and I. S. Chang, J. Control. Release, 97, 477 (2004) https://doi.org/10.1016/S0168-3659(04)00167-1
  22. S. K. Monika, M. Wolfgang, and H. C. Korting, Adv. Drug Deliver. Rev., 59, 427 (2007) https://doi.org/10.1016/j.addr.2007.04.006
  23. H. K. Cho, K. S. Cho, J. H. Cho, S. W. Choi, J. H. Kim, and I. W. Jung, Colloid Surface B, 65, 61 (2008) https://doi.org/10.1016/j.colsurfb.2008.02.017
  24. G. Cho and D. T. Glatzhofer, J. Ind. Eng. Chem., 3, 29 (1997)
  25. H. K. Cho, S. Lone, D. D. Kim, J. H. Choi, S. W. Choi, J. H. Cho, J. H. Kim, and I. W. Cheong, Polymer, 50, 2357 (2009) https://doi.org/10.1016/j.polymer.2009.03.032
  26. D. D. Verma, S. Verma, G. Blume, and A. Fahr, Inter. J. Pharm., 258, 141 (2003) https://doi.org/10.1016/S0378-5173(03)00183-2
  27. Y. S. Boris, C. Partibhash, H. Y. Henry, and H. L. Albert, Pharmaceut. Res., 24, 203 (2007) https://doi.org/10.1007/s11095-006-9146-7
  28. R. Alvarez-Roman, A. Naik, Y. N. Kalia, R. H. Guy, and H. Fessi, J. Control. Release, 99, 53 (2004) https://doi.org/10.1016/j.jconrel.2004.06.015