The Alignment of Liquid Crystals on the Film Surfaces of Soluble Aromatic Polyimides Bearing t-Butylphenyl and Trimethylsilylphenyl Side Groups

  • Hahm, Suk-Gyu (Department of Chemistry, Pohang Accelerator Laboratory, National Research Laboratory for Polymer Synthesis and Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology) ;
  • Jin, Kyeong-Sik (Department of Chemistry, Pohang Accelerator Laboratory, National Research Laboratory for Polymer Synthesis and Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology) ;
  • Park, Sam-Dae (Department of Chemistry, Pohang Accelerator Laboratory, National Research Laboratory for Polymer Synthesis and Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology) ;
  • Ree, Moon-Hor (Department of Chemistry, Pohang Accelerator Laboratory, National Research Laboratory for Polymer Synthesis and Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology) ;
  • Kim, Hyung-Sun (School of Materials Science and Engineering and Engineering Research Institute, Gyeongsang National University) ;
  • Kwon, Soon-Ki (School of Materials Science and Engineering and Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Yun-Hi (Department of Chemistry & RINS, Gyeongsang National University)
  • Published : 2009.12.25

Abstract

With the study goal of firstly elucidating the anisotropic interactions between oriented polymer chain segments and liquid crystal (LC) molecules, and secondly of determining the contributions of the chemical components of the polymer segments to the film surface topography, LC alignment, pretilt, and anchoring energy, we synthesized three dianhydrides, 1,4-bis(4'-t-butylphenyl)pyromellitic dianhydride (BBPD), 1,4-bis(4'-trimethylsilylphenyl)pyromellitic dianhydride(BTPD), and 2,2'-bis(4"-tert-butylphenyl)-4,4',5,5'-biphenyltetracarboxylic dianhydride (BBBPAn), and a series of their organosoluble polyirnides, BBPD-ODA, BBPD-MDA, BBPD-FDA, BTPD-FDA, and BBBPAn-FDA, which contain the diamines 4,4'-oxydianiline (ODA), 4,4'-methylenediamine (MDA), and 4,4'-(hexafluoroisopropylidene)dianiline (FDA). All the polyimides were determined to be positive birefringent polymers, regardless of the chemical components. Although all the rubbed polyimide films exhibited microgrooves which were created by rubbing process, the film surface topography varied depending on the polyimides. In all the rubbed films, the polymer chains were unidirectionally oriented along the rubbing direction. However, the degree of in-plane birefringence in the rubbed film varied depending on the polyimides. The rubbing-aligned polymer chains in the polyimide films effectively induced the alignment of nematic LCs along their orientation directors by anisotropic interactions between the preferentially oriented polymer chain segments and the LCs. The azimuthal and polar anchoring energies of the LCs ranged from $0.45{\times}10^{-4}\;-\;1.37{\times}10^{-4}\;J/m^2$ and from $0.86{\times}10^{-5}\;-\;4.26{\times}10^{-5}\;J/m^2$, respectively, depending on the polyimides. The pretilt angles of the LCs were in the range $0.10-0.62^{\circ}$. In summary, the soluble aromatic polyimides reported here are promising LC alignment layer candidates for the production of advanced LC display devices.

Keywords

References

  1. Y. Kim, C. S. Ha, T. Chang, W.-K. Lee, W. Goh, H. Kim, Y. Ha, and M. Ree, J. Nanosci. Nanotechnol., 9, 1533 (2009)
  2. S. G. Hahm, S. Choi, S.-H. Hong, T. J. Lee, S. Park, D. M. Kim, J. C. Kim, W.-S. Kwon, K. Kim, M.-J. Kim, O. Kim, and M. Ree, J. Mater. Chem., 19, 2207 (2009) https://doi.org/10.1039/b814470m
  3. S. G. Hahm, S. Choi, S.-H. Hong, T. J. Lee, S. Park, D. M. Kim, W.-S. Kwon, K. Kim, O. Kim, and M. Ree, Adv. Funct. Mater., 18, 3276 (2008) https://doi.org/10.1002/adfm.200800758
  4. T. J. Shin and M. Ree, J. Phys. Chem. B, 111, 13894 (2007) https://doi.org/10.1021/jp075067o
  5. M. Kim, S. Choi, M. Ree, and O. Kim, IEEE Electron Device Lett., 28, 967 (2007) https://doi.org/10.1109/LED.2007.906805
  6. T. J. Shin and M. Ree, Macromol. Chem. Phys., 203, 781 (2002)
  7. M. Ree, W. H. Goh, and Y. Kim, Polym. Bull., 35, 215 (1995) https://doi.org/10.1007/BF00312917
  8. M. Ree, T. J. Shin, and S. W. Lee, Korea Polym. J., 9, 1 (2001)
  9. Y. Kim, W. H. Goh, T. Chang, C. S. Ha, and M. Ree, Adv. Eng. Mater., 6, 39 (2004) https://doi.org/10.1002/adem.200300546
  10. T. J. Shin and M. Ree, Langmuir, 21, 6081 (2005) https://doi.org/10.1021/la050470c
  11. J. Yu, M. Ree, Y. H. Park, T. J. Shin, W. Cai, D. Zhou, and K.-W. Lee, Macromol. Chem. Phys., 201, 491 (2000) https://doi.org/10.1002/(SICI)1521-3935(20000301)201:5<491::AID-MACP491>3.0.CO;2-2
  12. S. I. Kim, M. Ree, T. J. Shin, C. Lee, T.-H. Woo, and S. B. Rhee, Polymer, 41, 5173 (2000) https://doi.org/10.1016/S0032-3861(99)00748-X
  13. J. Yu, M. Ree, T. J. Shin, X. Wang, W. Cai, D. Zhou, and K.-W. Lee, J. Polym. Sci. Part B: Polym. Phys., 37, 2806 (1999) https://doi.org/10.1002/(SICI)1099-0488(19991001)37:19<2806::AID-POLB10>3.0.CO;2-U
  14. S. M. Pyo, S. I. Kim, T. J. Shin, Y. H. Park, and M. Ree, J. Polym. Sci. Part A: Polym. Chem., 37, 937 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990401)37:7<937::AID-POLA10>3.0.CO;2-I
  15. Y. Kim, E. Kang, Y. S. Kwon, W. J. Cho, C. Chang, M. Ree, T. Chang, and C. S. Ha, Synthetic Metals, 85, 1399 (1997) https://doi.org/10.1016/S0379-6779(97)80291-3
  16. Y. Kim, W. K. Lee, W. J. Cho, C. S. Ha, M. Ree, and T. Chang, Polym. Internl., 43, 129 (1997) https://doi.org/10.1002/(SICI)1097-0126(199706)43:2<129::AID-PI715>3.0.CO;2-S
  17. M. Ree, K. Kim, S. H. Woo, and H. Chang, J. Appl. Phys., 81, 698 (1997) https://doi.org/10.1063/1.364210
  18. Y. Kim, M. Ree, T. Chang, C. S. Ha, T. L. Nunes, and J. S. Lin, J. Polym. Sci. Part B: Polym. Phys., 33, 2075 (1995) https://doi.org/10.1002/polb.1995.090331409
  19. M. Ree, W. H. Goh, J. W. Park, M. H. Lee, and S. B. Rhee, Polym. Bulln., 35, 129 (1995) https://doi.org/10.1007/BF00312904
  20. Y. Kim, M. Ree, T. Chang, and C. S. Ha, Polym. Bulln., 34, 175 (1995) https://doi.org/10.1007/BF00316393
  21. M. Ree, H. Han, and C. C. Gryte, J. Polym. Sci. Part B: Polym. Phys., 33, 505 (1995) https://doi.org/10.1002/polb.1995.090330319
  22. M. Ree, K. J. Chen, and T. L. Nunes, J. Polym. Sci. Part B: Polym. Phys., 33, 453 (1995) https://doi.org/10.1002/polb.1995.090330314
  23. M. Ree, T. J. Nunes, and J. S. Lin, Polymer, 35, 1148 (1994) https://doi.org/10.1016/0032-3861(94)90005-1
  24. M. Ree, C. W. Chu, and M. J. Goldberg, J. Appl. Phys., 75, 1410 (1994) https://doi.org/10.1063/1.356422
  25. M. Ree, S. Swanson, and W. Volksen, Polymer, 34, 1423 (1993) https://doi.org/10.1016/0032-3861(93)90855-5
  26. M. Ree, K.-R. J. Chen, and G. Czornyj, Polym. Eng. Sci., 32, 924 (1992) https://doi.org/10.1002/pen.760321403
  27. M. Ree, K. J. Chen, D. P. Kirby, N. Katzenellenbogen, and D. Grischkowsky, J. Appl. Phys., 72, 2014 (1992) https://doi.org/10.1063/1.351629
  28. M. Ree, T. L. Nunes, G. Czornyj, and W. Volksen, Polymer, 33, 1228 (1992) https://doi.org/10.1016/0032-3861(92)90768-R
  29. M. Ree, D. Y. Yoon, and W. Volksen, J. Polym. Sci. Part B: Polym. Phys., 29, 1203 (1991) https://doi.org/10.1002/polb.1991.090291005
  30. M. Ree, T. J. Shin, Y. H. Park, H. Lee, and T. Chang, Korea Polym. J., 7, 370 (1999)
  31. W. H. Goh, K. Kim, and M. Ree, Korea Polym. J., 6, 241 (1998)
  32. S. I. Kim, T. J. Shin, M. Ree, G. T. Hwang, B. H. Kim, H. Han, and J. Seo, J. Polym. Sci. Part A: Polym. Chem., 37, 2013 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990701)37:13<2013::AID-POLA15>3.0.CO;2-J
  33. Y. Kim, W. H. Goh, T. Chang, C. S. Ha, and M. Ree, Adv. Eng. Mater., 6, 39 (2004)
  34. T. J. Shin, H. K. Park, S. W. Lee, B. Lee, W. Oh, J.-S. Kim, S. Baek, Y.-T. Hwang, H.-C. Kim, and M. Ree, Polym. Eng. Sci., 46, 1232 (2003)
  35. T. J. Shin, B. Lee, H. S. Youn, K.-B. Lee, and M. Ree, Langmuir, 17, 7842 (2001) https://doi.org/10.1021/la0108656
  36. I. S. Chung, C. E. Park, M. Ree, and S. Y. Kim, Chem. Mater., 13, 2801 (2001) https://doi.org/10.1021/cm000838l
  37. P. J. Collings and J. S. Patel, Eds., Handbook of Liquid Crystal Research, Oxford University Press, Oxford, 1997
  38. J. Cognard, Eds., Alignment of Liquid Crystals and Their Mixtures, Gorden & Breach, London, 1982
  39. K.-W. Lee, S.-H. Paek, A. Lien, C. During, and H. Fukuro, Macromolecules, 29, 8894 (1996) https://doi.org/10.1021/ma960683w
  40. N. A. J. van Aerle and J. W. Tol, Macromolecules, 27, 6520 (1994) https://doi.org/10.1021/ma00100a042
  41. S. G. Hahm, T. J. Lee, T. Chang, J. C. Jung, W.-C. Zin, and M. Ree, Macromolecules, 39, 5385 (2006) https://doi.org/10.1021/ma060956f
  42. A. S. Mathews, I. Kim, and C. S. Ha, Macromol. Res., 15, 114 (2007) https://doi.org/10.1007/BF03218762
  43. S. W. Kang, Macromol. Res., 15, 487 (2007) https://doi.org/10.1007/BF03218820
  44. J. Y. Lee, J. H. Kim, and B. K. Rhee, Macromol. Res., 15, 234 (2007) https://doi.org/10.1007/BF03218781
  45. G. Y. Lee, H. N. Jang, and W. T. Jung, et al., Macromol. Res., 16, 741 (2008) https://doi.org/10.1007/BF03218589
  46. S. G. Hahm, S. W. Lee, J. Suh, B. Chae, S. B. Kim, S. J. Lee, K. H. Lee, J. C. Jung, and M. Ree, High Preform. Polym., 18, 549 (2006) https://doi.org/10.1177/0954008306068117
  47. T. J. Lee, S. G. Hahm, S. W. Lee, B. Chae, S. J. Lee, G. Kim, S. B. Kim, J. C. Jung, and M. Ree, Mater. Sci. Eng. B, 132, 64 (2006) https://doi.org/10.1016/j.mseb.2006.02.037
  48. J. K. Lee, S. J. Lee, J. C. Jung, W.-C. Zin, T. Chang, and M. Ree, Polym. Adv. Technol., 17, 444 (2006) https://doi.org/10.1002/pat.732
  49. S. B. Lee, G. J. Shin, J. H. Chi, W.-C. Zin, J. C. Jung, S. G. Hahm, M. Ree, and T. Chang, Poymer, 47, 6606 (2006)
  50. S. W. Lee, S. J. Lee, S. G. Hahm, T. J. Lee, B. Lee, B. Chae, S. B. Kim, J. C. Jung, W. C. Zin, B. H. Sohn, and M. Ree, Macromolecules, 38, 4331 (2005) https://doi.org/10.1021/ma047856z
  51. S. J. Lee, J. C. Jung, S. W. Lee, and M. Ree, J. Polym. Sci. Part A: Polym. Chem., 42, 3130 (2004) https://doi.org/10.1002/pola.20165
  52. B. Chae, S. W. Lee, B. Lee, W. Choi, S. B. Kim, Y. M. Jung, J. C. Jung, K. H. Lee, and M. Ree, J. Phys. Chem. B, 107, 11911 (2003) https://doi.org/10.1021/jp034955q
  53. S. W. Lee, B. Chae, B. Lee, W. Choi, S. B. Kim, S. I. Kim, S.-M. Park, J. C. Jung, K. H. Lee, and M. Ree, Chem. Mater., 15, 3105 (2003) https://doi.org/10.1021/cm034055m
  54. B. Chae, S. W. Lee, B. Lee, W. Choi, S. B. Kim, Y. M. Jung, J. C. Jung, K. H. Lee, and M. Ree, Langmuir, 19, 9459 (2003) https://doi.org/10.1021/la034230d
  55. B. Chae, S. B. Kim, S. W. Lee, S. I. Kim, W. Choi, B. Lee, M. Ree, K. H. Lee, and J. C. Jung, Macromolecules, 35, 10119 (2002) https://doi.org/10.1021/ma020639i
  56. S. W. Lee, T. Chang, and M. Ree, Macromol. Rapid Commun., 22, 941 (2001) https://doi.org/10.1002/1521-3927(20010801)22:12<941::AID-MARC941>3.0.CO;2-Q
  57. J. H. Park, B.-H. Sohn, J. C. Jung, S. W. Lee, and M. Ree, J. Polym. Sci. Part B: Polym. Chem., 39, 1800 (2001) https://doi.org/10.1002/pola.1157
  58. J. H. Park, J. C. Jung, B. H. Sohn, S. W. Lee, and M. Ree, J. Polym. Sci. Part A: Polym. Chem., 39, 3622 (2001) https://doi.org/10.1002/pola.10010
  59. S. W. Lee, S. I. Kim, Y. H. Park, M. Ree, K. H. Lee, and J. C. Jung, Mol. Cryst. Liq. Cryst., 368, 559 (2001) https://doi.org/10.1080/10587250108029988
  60. J. C. Jung, K. H. Lee, B. H. Sohn, S. W. Lee, and M. Ree, Macromol. Symp., 164, 227 (2001) https://doi.org/10.1002/1521-3900(200102)164:1<227::AID-MASY227>3.0.CO;2-Y
  61. S. W. Lee, S. I. Kim, Y. H. Park, M. Ree, Y. N. Rim, H. J. Yoon, H. C. Kim, and Y. B. Kim, Mol. Cryst. Liq. Cryst., 349, 279 (2000) https://doi.org/10.1080/10587250008024919
  62. S. W. Lee, S. I. Kim, Y. H. Park, M. Ree, K. H. Lee, and J. C. Jung, Mol. Cryst. Liq. Cryst., 349, 271 (2000) https://doi.org/10.1080/10587250008024917
  63. S. I. Kim, T. J. Shin, M. Ree, and J. C. Jung, J. Soc. Inform. Display, 8, 61 (2000) https://doi.org/10.1889/1.1828703
  64. M. Ree, S. I. Kim, S. M. Pyo, T. J. Shin, H. K. Park, and J. C. Jung, Macromol. Symp., 142, 73 (1999) https://doi.org/10.1002/masy.19991420109
  65. S. I. Kim, M. Ree, T. J. Shin, and J. C. Jung, J. Polym. Sci. Part A: Polym. Chem., 37, 2909 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990801)37:15<2909::AID-POLA24>3.0.CO;2-B
  66. S. I. Kim, S. M. Pyo, M. Ree, M. Park, and Y. Kim, Mol. Cryst. Liq. Cryst., 316, 209 (1998) https://doi.org/10.1080/10587259808044493
  67. H. Kikuchi, J. A. Logan, and D. Y. Yoon, J. Appl. Phys., 79, 6811 (1996) https://doi.org/10.1063/1.361502
  68. S. G. Hahm, T. J. Lee, and M. Ree, Adv. Funct. Mater., 17, 1359 (2007) https://doi.org/10.1002/adfm.200600369
  69. S. G. Hahm, S. W. Lee, T. J. Lee, S. A. Cho, B. Chae, Y. M. Jung, S. B. Kim, and M. Ree, J. Phys. Chem. B, 112, 4900 (2008) https://doi.org/10.1021/jp7101868
  70. S. W. Lee, S. I. Kim, B. Lee, H. C. Kim, T. Chang, and M. Ree, Langmuir, 19, 10381 (2003) https://doi.org/10.1021/la0348158
  71. S. W. Lee, S. I. Kim, B. Lee, W. Choi, B. Chae, S. B. Kim, and M. Ree, Macromolecules, 36, 6527 (2003) https://doi.org/10.1021/ma034445u
  72. M. Ree, S. I. Kim, and S. W. Lee, Synthetic Metals, 117, 273 (2001) https://doi.org/10.1016/S0379-6779(00)00384-2
  73. D. Kim, M. Oh-e, and Y. R. Shen, Macromolecules, 34, 9125 (2001) https://doi.org/10.1021/ma0100908
  74. M. G. Samant, J. Stohr, H. R. Brown, T. P. Russell, J. M. Sands, and S. K. Kumar, Macromolecules, 29, 8334 (1996) https://doi.org/10.1021/ma951820c
  75. M. F. Toney, T. P. Russell, J. A. Logan, H. Kikuchi, J. M. Sands, and S. K. Kumar, Nature, 374, 709 (1995) https://doi.org/10.1038/374709a0
  76. K. Sakamoto, R. Arafune, N. Ito, S. Ushioda, Y. Suzuki, and S. Morokawa, J. Appl. Phys., 80, 431 (1996) https://doi.org/10.1063/1.362744
  77. D. W. Berreman, Phys. Rev. Lett., 28, 1683 (1972) https://doi.org/10.1103/PhysRevLett.28.1683
  78. P. G. de Gennes, W. Marshall, and D. H. Wilkinson, Eds., Physics of Liquid Crystals, Oxford, Clarendon, 1974
  79. D. C. Flanders, D. C. Shaver, and H. I. Smith, Appl. Phys. Lett., 32, 597 (1978) https://doi.org/10.1063/1.89864
  80. A. Sugimua, N. Yamanoto, and T. Kawamura, Jpn. J. Appl. Phys., 20, 1343 (1981) https://doi.org/10.1143/JJAP.20.1343
  81. M. Nakamura and M. Ura, J. Appl. Phys., 52, 210 (1981) https://doi.org/10.1063/1.328478
  82. E. S. Lee, P. Vetter, T. Miyashita, T. Uchida, M. Kano, M. Abe, and K. Sugawara, Jpn. J. Appl. Phys., 32, L1436 (1993) https://doi.org/10.1143/JJAP.32.L1436
  83. A. J. Pidduck, G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, J. Vac. Sci. Technol. A, 14, 1723 (1996) https://doi.org/10.1116/1.580327
  84. J. Kim and S. Kumar, Phys. Rev. E, 57, 5644 (1998) https://doi.org/10.1103/PhysRevE.57.5644
  85. M. P. Mahajan and C. Rosenblatt, J. Appl. Phys., 83, 7649 (1998) https://doi.org/10.1063/1.367883
  86. T. Uchida, M. Hirano, and H. Sakai, Liq. Cryst., 5, 1127 (1989) https://doi.org/10.1080/02678298908026417
  87. M. E. Becker, R. A. Killan, B. B. Kosmowski, and D. A. Mlynski, Mol. Cryst. Liq. Cryst., 132, 167 (1986) https://doi.org/10.1080/00268948608079537
  88. J. A. Castellano, Mol. Cryst. Liq. Cryst., 94, 33 (1983) https://doi.org/10.1080/00268948308084245
  89. S. W. Lee, B. Chae, S. G. Hahm, B. Lee, S. B. Kim, and M. Ree, Polymer, 45, 4068 (2005)
  90. S. W. Lee and M. Ree, J. Polym. Sci. Part B: Polym. Chem., 42, 1322 (2004) https://doi.org/10.1002/pola.11059
  91. B. Chae, S. W. Lee, S. B. Kim, B. Lee, and M. Ree, Langmuir, 19, 6039 (2003) https://doi.org/10.1021/la0340596
  92. B. Chae, S. W. Lee, Y. M. Jung, M. Ree, and S. B. Kim, Langmuir, 19, 687 (2003) https://doi.org/10.1021/la020453c
  93. B. Chae, S. W. Lee, M. Ree, and S. B. Kim, Vibrational Spectro., 29, 69 (2002) https://doi.org/10.1016/S0924-2031(01)00181-3
  94. S. G. Hahm, T. J. Lee, S. W. Lee, J. Yoon, and M. Ree, Mater. Sci. Eng. B, 132, 54 (2006) https://doi.org/10.1016/j.mseb.2006.02.036
  95. S. W. Lee, H. C. Kim, B. Lee, T. Chang, and M. Ree, Macromolecules, 36, 9905 (2003) https://doi.org/10.1021/ma035258z
  96. S. W. Lee, B. Chae, H. C. Kim, B. Lee, W. Choi, S. B. Kim, T. Chang, and M. Ree, Langmuir, 19, 8735 (2003) https://doi.org/10.1021/la034883u
  97. J. C. Dubois, M. Gazard, and A. Zann, J. Appl. Phys., 47, 1270 (1975) https://doi.org/10.1063/1.322824
  98. K. Miyano, Phys. Rev. Lett., 43, 51 (1979) https://doi.org/10.1103/PhysRevLett.43.51
  99. M. B. Feller, W. Chen, and Y. R. Shen, Phys. Rev. A, 43, 6778 (1991) https://doi.org/10.1103/PhysRevA.43.6778
  100. K. Sakamoto, R. Arafune, S. Ushioda, Y. Suzuki, and S. Morokawa, Appl. Surf. Sci., 100-101, 124 (1996) https://doi.org/10.1016/0169-4332(96)00271-1
  101. N. Mori, M. Morimoto, and K. Nakamura, Macromolecules, 32, 1488 (1999) https://doi.org/10.1021/ma981531z
  102. J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. A. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidll, Science, 292, 2299 (2001) https://doi.org/10.1126/science.1059866
  103. K. Weiss, C. Woll, E. Bohm, B. Fiebranz, G. Forstmann, B. Peng, V. Scheumann, and D. Johannsmann, Macromolecules, 31, 1930 (1998) https://doi.org/10.1021/ma971075z
  104. J. J. Ge, C. Y. Li, G. Xue, I. K. Mann, D. Zhang, S.-Y. Wang, F. W. Harris, S. Z. D. Cheng, S.-C. Hong, X. Zhuang, and Y. R. Shen, J. Am. Chem. Soc., 123, 5768 (2001) https://doi.org/10.1021/ja0042682
  105. D. Johannsmann, H. Zhou, P. Sonderkaer, H. Wierenga, B. O. Myrvold, and Y. R. Shen, Phys. Rev. E, 48, 1889 (1993) https://doi.org/10.1103/PhysRevE.48.1889
  106. G. Durand, Physica A, 163, 94 (1990) https://doi.org/10.1016/0378-4371(90)90318-M
  107. V. G. Nazarenko and O. D. Lavrentovich, Phys. Rev. E, 49, R990 (1994) https://doi.org/10.1103/PhysRevE.49.R990
  108. G. Barbero, L. R. Evangelista, and N. V. Madhusudana, Eur. Phys. J., 1, 327 (1998)
  109. H.-S. Kim, Y.-H. Kim, S.-K. Ahn, and S.-K. Kwon, Macromolecules, 36, 2327 (2003) https://doi.org/10.1021/ma0214557
  110. Y.-H. Kim, S.-K. Ahn, H. S. Kim, and S.-K. Kwon, J. Polym. Sci. Part A: Polym. Chem., 40, 4288 (2002) https://doi.org/10.1002/pola.10493
  111. Y. A. Nastishin, R. D. Polak, S. V. Ahiyanovski, V. H. Bodnar, and O. D. Lavrentovich, J. Appl. Phys., 86, 4199 (1999) https://doi.org/10.1063/1.371347
  112. X. Nie, Y.-H. Lin, T. X. Wu, H. Wang, Z. Ge, and S.-T. Wu, J. Appl. Phys., 98, 013156 (2005)
  113. M. Born and E. Wolf, Eds., Principle of Optics, Pergamon, Oxford, 1980
  114. R. A. Chipman, Eds., Handbook of Optics II, McGraw-Hill, New York, 1995
  115. J. M. Geary, J. W. Goodby, A. R. Kmetz, and J. S. Patel, J. Appl. Phys., 62, 4100 (1987) https://doi.org/10.1063/1.339124
  116. B. S Ban, Y. N. Rim, and Y. B. Kim, Liq. Cryst., 27, 125 (2000) https://doi.org/10.1080/026782900203290
  117. Y. B. Kim and B. S. Ban, Liq. Cryst., 26, 1579 (1999) https://doi.org/10.1080/026782999203553