Hybrid Nanocomposites of Palladium Nanoparticles Having POSS and MWNTs via Ionic Interactions

  • Jeon, Jong-Hwan (Department of Polymer Science and Engineering, Chungju National University) ;
  • Lim, Jung-Hyurk (Department of Polymer Science and Engineering, Chungju National University) ;
  • Kim, Kyung-Min (Department of Polymer Science and Engineering, Chungju National University)
  • Published : 2009.12.25

Abstract

Palladium nanoparticles having cubic silsesquioxanes (POSS) (Pd-POSS) were produced by the reaction of palladium (II) acetate and octa(3-aminopropyl)octasilsesquioxane octahydrochloride (POSS-${NH_3}^+$ in methanol at room temperature. Functionalized multiwalled carbon nanotubes (MWNT-COOH) were prepared by acid treatment of pristine MWNTs. The hybrid nanocomposites of Pd-POSS and MWNT-COOH (Pd-MWNT nanocomposites) were synthesized by self-assembly method via ionic interaction between positively charged Pd-POSS and negatively charged MWNT-$COO^-$. The spherical aggregates of Pd-POSS with a diameter of 40-60 urn were well attached to the surfaces of MWNT-COOH on Silicon wafer. The composition, structure, and surface morphology of Pd-MWNT nanocomposites were studied by UV-vis spectrophotometer, energy dispersive spectrum (EDX), scanning electron microscopy (SEM), and atomic force microscope (AFM).

Keywords

References

  1. M. C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004) https://doi.org/10.1021/cr030698+
  2. A. Henglein, Chem. Rev., 89, 1861 (1989) https://doi.org/10.1021/cr00098a010
  3. A. C. Templeton, W. P. Wuelfing, and R. W. Murray, Acc. Chem. Res., 33, 27 (2000) https://doi.org/10.1021/ar9602664
  4. G. Schmid and B. Corain, Eur. J. Inorg. Chem., 3081 (2003)
  5. R. Schenhar, T. B. Norsten, and V. M. Rotello, Adv. Mater., 17, 657 (2005) https://doi.org/10.1002/adma.200401291
  6. C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, Chem. Soc. Rev., 29, 27 (2000) https://doi.org/10.1039/a904518j
  7. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature (London,U.K.), 382, 607 (1996) https://doi.org/10.1038/382607a0
  8. S. Mann, W. Shenton, M. Li, S. Connolly, and D. Fitzmaurice, Adv. Mater., 12, 147 (2000) https://doi.org/10.1002/(SICI)1521-4095(200001)12:2<147::AID-ADMA147>3.0.CO;2-U
  9. T. Teranishi, M. Haga, Y. Shiozawa, and M. Miyake, J. Am. Chem. Soc., 122, 4237 (2000) https://doi.org/10.1021/ja000031u
  10. S. Mandal, A. Gole, N. Lala, R. Gonnade, V. Ganvir, and M. Sastry, Langmuir, 17, 6262 (2001) https://doi.org/10.1021/la010536d
  11. E. Adachi, Langmuir, 16, 6460 (2000) https://doi.org/10.1021/la000244x
  12. J. Jin, T. Iyoda, C. Cao, Y. Song, L. Jiang, T. Li, and D. Zhu, Angew. Chem. Int. Ed., 40, 2135 (2001) https://doi.org/10.1002/1521-3773(20010601)40:11<2135::AID-ANIE2135>3.0.CO;2-O
  13. I. Hussain, Z. Wang, A. I. Cooper, and M. Brust, Langmuir, 22, 2938 (2006) https://doi.org/10.1021/la053126o
  14. W. A. De Heer, A. Chatelain, and E. Ugarte, Science, 270, 1179 (1995) https://doi.org/10.1126/science.270.5239.1179
  15. P. M. Ajayan, O. Stephan, C. Collix, and D. Trauth, Science, 265, 1212 (1994) https://doi.org/10.1126/science.265.5176.1212
  16. P. Chen, X. Wu, J. Lin, and K. L. Tan, Science, 285, 91 (1999) https://doi.org/10.1126/science.285.5424.91
  17. J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, and H. J. Dai, Science, 287, 622 (2000) https://doi.org/10.1126/science.287.5453.622
  18. S. D. Park, W. Xu, C. Chung, and Y. Kwon, Macromol. Res., 16, 155 (2008) https://doi.org/10.1007/BF03218845
  19. I. Park, M. Park, J. Kim, H. Lee, and M. S. Lee, Macromol. Res., 15, 498 (2007) https://doi.org/10.1007/BF03218822
  20. B. S. Kim, K. D. Suh, and B. Kim, Macromol. Res., 16, 76 (2008) https://doi.org/10.1007/BF03218966
  21. S. H. Lee, J. S. Park, C. M. Koo, B. K. Lim, and S. O. Kim, Macromol. Res., 16, 261 (2008) https://doi.org/10.1007/BF03218862
  22. K. H. Kim and W. H. Jo, Macromol. Res., 16, 749 (2008) https://doi.org/10.1007/BF03218591
  23. N. S. Lawrence, R. P. Deo, and J. Wang, Electroanalysis, 17, 65 (2005) https://doi.org/10.1002/elan.200403120
  24. K. F. Fu and Y. P. Sun, J. Nanosci. Nanotechnol., 3, 351 (2003) https://doi.org/10.1166/jnn.2003.225
  25. Y. P. Sun, K. F. Fu, Y. Lin, and W. J. Huang, Acc. Chem. Res., 35, 1096 (2002) https://doi.org/10.1021/ar010160v
  26. J. Liu, A. G. Rinzler, H. J. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, Science, 280, 1253 (1998) https://doi.org/10.1126/science.280.5367.1253
  27. W. Z. Li, C. H. Liang, W. J. Zhou, J. S. Qiu, Z. H. Zhou, G. Q. Sun, and Q. Xin, J. Phys. Chem. B, 107, 6292 (2003) https://doi.org/10.1021/jp022505c
  28. J. Kong, M. G. Chapline, and H. J. Dai, Adv. Mater., 13, 1384 (2001) https://doi.org/10.1002/1521-4095(200109)13:18<1384::AID-ADMA1384>3.0.CO;2-8
  29. A. Bezryadin, C. N. Lau, and M. Tinkham, Nature, 404, 971 (2000) https://doi.org/10.1038/35010060
  30. B. Xue, P. Chen, Q. Hong, J. Y. Lin, and K. L. Tan, J. Mater. Chem., 11, 2378 (2001) https://doi.org/10.1039/b100618p
  31. J. Li, M. Moskovits, and T. L. Haslett, Chem. Mater., 10, 1963 (1998) https://doi.org/10.1021/cm980122e
  32. B. R. Azamian, K. S. Coleman, J. J. Davis, N. Hanson, and M. L. H. Green, Chem. Commun., 366 (2002)
  33. Y. Mu, H. Liang, J. Hu, L. Jiang, and L. Wan, J. Phys. Chem. B, 109, 22212 (2005) https://doi.org/10.1021/jp0555448
  34. G. P. Jin, Y. F. Ding, and P. P. Zheng, J. Power Sources, 166, 80 (2007) https://doi.org/10.1016/j.jpowsour.2006.12.087
  35. C. H. Yen, K. Shimizu, Y. Y. Lin, F. Bailey, I. F. Cheng, and C. M. Wai, Energy Fuels, 21, 2268 (2007) https://doi.org/10.1021/ef0606409
  36. J. Shi, Z. Wang, and H. L. Li, J. Nanoparticle Res., 8, 743 (2006) https://doi.org/10.1007/s11051-005-9062-5
  37. S. Banerjee, M. G. C. Kahn, and S. S. Wong, Chem. Eur. J., 9, 1898 (2003) https://doi.org/10.1002/chem.200204618
  38. J. Chattopadhyay, A. K. Sadana, F. Liang, J. M. Beach, Y. Xiao, R. H. Hauge, and W. E. Billups, Org. Lett., 7, 4067 (2005) https://doi.org/10.1021/ol050862a
  39. P. F. Ho and K. M. Chi, Nanotechnology, 15, 1059 (2004) https://doi.org/10.1088/0957-4484/15/8/035
  40. Y. Hayashi, T. Tokunaga, S. Toh, W. J. Moon, and K. Kaneko, Diamond. Relat. Mater., 14, 790 (2005) https://doi.org/10.1016/j.diamond.2004.12.008
  41. G. Guella, C. Zanchetta, B. Patton, and A. Miotello, J. Phys. Chem. B, 110, 17024 (2006) https://doi.org/10.1021/jp063362n
  42. A. Corma, H. Garcia, and A. Primo, J. Catal., 241, 123 (2006) https://doi.org/10.1016/j.jcat.2006.04.021
  43. Y. Fukai and H. Sugimoto, Adv. Phys., 34, 263 (1985) https://doi.org/10.1080/00018738500101751
  44. N. Watari, S. Ohnishi, and Y. Ishii, J. Phys. Condens. Matter., 12, 6799 (2000) https://doi.org/10.1088/0953-8984/12/30/310
  45. S. Kishore, J. A. Nelson, J. H. Adair, and P. C. Eklund, J. Alloy Compd., 389, 234 (2005) https://doi.org/10.1016/j.jallcom.2004.06.105
  46. S. Horinouchi, Y. Yamanoi, T. Yonezawa, T. Mouri, and H. Nishihara, Langmuir, 22, 1880 (2006) https://doi.org/10.1021/la052657+
  47. A. Anson, E. Lafuente, E. Urriolabeitia, R. Navarro, A. M. Benito, W. K. Maser, and M. T. Martinez, J. Phys. Chem. B, 110, 6643 (2006) https://doi.org/10.1021/jp057206c
  48. J. Evans, Chem. World, 3, 16 (2006)
  49. G. Korotcenkov, V. Brinzari, Y. Boris, M. Ivanova, J. Schwank, and J. Morante, Thin Solid Films, 436, 119 (2003) https://doi.org/10.1016/S0040-6090(03)00506-6
  50. T. Skala, K. Veltruska, M. Moroseac, I. Matolinova, A. Cirera, and V. Matolin, Surf. Sci., 566, 1217 (2004) https://doi.org/10.1016/j.susc.2004.06.087
  51. Y. Suda, H. Kawasaki, J. Namba, K. Iwatsuji, K. Doi, and K. Wada, Surf. Coat. Technol., 174, 1293 (2003) https://doi.org/10.1016/S0257-8972(03)00530-9
  52. S. Toh, K. Kaneko, Y. Hayashi, T. Tokunaga, and W. J. Moon, J. Electron. Microsc., 53, 149 (2004) https://doi.org/10.1093/jmicro/53.2.149
  53. Y. J. Lu, J. Li, J. Han, H. T. Ng, C. Binder, C. Partridge, and M. Meyyappan, Chem. Phys. Lett., 391, 344 (2004) https://doi.org/10.1016/j.cplett.2004.05.029
  54. F. J. Feher and K. D. Wyndham, Chem. Commun., 323 (1998)
  55. C. Gao, Y. Z. Jin, H. Kong, R. L. D. Whitby, S. F. A. Acquah, G. Y. Chen, H. Qian, A. Hartschuh, S. R. P. Silva, S. Henley, P. Fearon, H. W. Kroto, and D. R. M. Walton, J. Phys. Chem. B, 109, 11925 (2005) https://doi.org/10.1021/jp051642h
  56. K. Naka, H. Itoh, and Y. Chujo, Nano Lett., 2, 1183 (2002) https://doi.org/10.1021/nl025713p