Copolymerization of N-Vinyl Pyrrolidone with Functionalized Vinyl Monomers: Synthesis, Characterization and Reactivity Relationships

  • Vijaykumar, S. (Department of Industrial Chemistry, Kuvempu University) ;
  • Prasannkumar, S. (Department of Industrial Chemistry, Kuvempu University) ;
  • Sherigara, B.S. (Department of Industrial Chemistry, Kuvempu University) ;
  • Shelke, N.B. (Drug Delivery Division, Center of Excellence in Polymer Science, Karnatak University) ;
  • Aminabhavi, Tejraj M. (Drug Delivery Division, Center of Excellence in Polymer Science, Karnatak University) ;
  • Reddy, B.S.R. (Central Leather Research Institute Chennai)
  • Published : 2009.12.25

Abstract

Copolymers of N-vinylpyrrolidone (NVP) comonomer with styrene (St), hydroxypropyl methacrylate (HPMA) and carboxyphenyl maleimide (CPMI) were synthesized by free radical polymerization using 2,2'-azobisisobutyronitrile (AIBN) initiator in 1,4-dioxane solvent. The copolymers formed were characterized by FTIR, $^1H$ NMR and $^{13}C$ NMR techniques and their thermal properties were studied by DSC and TGA. Copolymer composition was determined by $^1H$ NMR and/or by elemental analysis and monomer reactivity ratios (MRR) were estimated by the linear methods of Kelen-Tudos (K-T) and extended Kelen-Tudos (EK-T) and the non-linear approach. Copolymers of St and HPMA with NVP formed blocks of one of the monomer units, whereas alternating copolymers were obtained in CPMI-NVP, depending upon the side chain substitution. The MRR values are discussed in terms of monomer structural properties such as electronegativity and electron delocalization. The sequence distribution of monomers in the copolymers was studied by statistical method based on the average reactivity ratios obtained by EK-T method.

Keywords

References

  1. D. Radic and L. Gargallo, Macromolecules, 30, 817 (1997) https://doi.org/10.1021/ma960956n
  2. D. A Queiroz, R. R Vargas, O. Z Higa, R. R Ribeiro, and M. Vitolo, J. Appl. Polym. Sci., 84, 767 (2002) https://doi.org/10.1002/app.10326
  3. S. K Bajpai and J. Sonkusley, J. Appl. Polym. Sci., 83, 1717 (2002) https://doi.org/10.1002/app.10097
  4. T. Beitz, J. Kotz, G. Wolf, E. Lleinpeter, and S. E. Fribery, J. Colloid Interf. Sci., 240, 581 (2001) https://doi.org/10.1006/jcis.2001.7635
  5. M. Basri, A. Harun, M. B. Ahmad, C. A. N Razak, and A. B. Salleh, J. Appl. Polym. Sci., 82, 1404 (2001) https://doi.org/10.1002/app.1977
  6. S. Vijayasekaran, T. V. Chirila, Y. Hong, S. G. Tahija, P. D. Dalton, I. J. Constable, and I. L. McAllister, J. Biomater. Sci. Polym. Ed., 7, 685 (1996)
  7. H. Ranucci, G. Spagnoli, L. Sartore, F. Bignottie, and P. Ferruti, Macromol. Chem. Phys., 196, 763 (1995) https://doi.org/10.1002/macp.1995.021960307
  8. H. Y. Lee, S. A. Yu, K. H. Jeong, and Y. J. Kim, Macromol. Res., 15, 547 (2007) https://doi.org/10.1007/BF03218829
  9. M. Otagiri, T. Imai, H. Koinuma, and U. Matsumoro, J. Pharm. Biomed. Anal., 7, 929 (1989) https://doi.org/10.1016/0731-7085(89)80017-2
  10. R. J. Mumper, J. G. Duguid, K. Anwer, M. K. Barron, H. Nitta, and A. P. Rolland, Pharm. Res., 13, 701 (1996) https://doi.org/10.1023/A:1016039330870
  11. B. S. S. Reddy, R. Arshady, and M. George, Eur. Polym. J., 21, 511 (1985) https://doi.org/10.1016/0014-3057(85)90074-6
  12. S. Morariu and C. Hulubei, High Perform. Polym., 18, 185 (2006) https://doi.org/10.1177/0954008306058050
  13. G. Bauduin, B. Boutevin, M. Belbachir, and R. Meghabar, Macromolecules, 28, 1750 (1995) https://doi.org/10.1021/ma00110a004
  14. A. Miller, J. Szafko, and E. Turska, J. Polym. Sci., 51, 15 (1977) https://doi.org/10.1002/pol.1961.1205115620
  15. P. Bajaj, K. Sen, and S. H. Bahrami, J. Appl. Polym. Sci., 59, 1539 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960307)59:10<1539::AID-APP6>3.0.CO;2-N
  16. C. Soykan, M. Coskun, and M. Ahmedzade, Polym. Int., 49, 479 (2000) https://doi.org/10.1002/1097-0126(200006)49:6<479::AID-PI334>3.0.CO;2-W
  17. S. V. Kumar, S. Prasannakumar, T. E. Musturappa, K. M. Mahadevan, and B. S. Sherigara, J. Macromol. Sci. A, 44, 1161 (2007) https://doi.org/10.1080/10601320701561072
  18. T. Kelen and F. Tudos, J. Macromol. Sci. Chem., 1, 9 (1975)
  19. T. Kelen, F. Tudos, B. T. Foldes, and B. Turcsanyi, J. Macromol. Sci., 10, 1513 (1976) https://doi.org/10.1080/00222337608060768
  20. M. Dube and S. R. Amin, J. Polym. Sci. Part A: Polym. Chem., 29, 703 (1991) https://doi.org/10.1002/pola.1991.080290512
  21. B. S. Reo, J. Polym. Sci. Part C: Polym. Lett., 3, 26 (1998)
  22. M. B. Huglin and K. S. Khairou, Eur. Polym. J., 24, 239 (1988) https://doi.org/10.1016/0014-3057(88)90215-7
  23. S. Rosen, Fundamental Principles of Polymeric Materials, John Wiley & Sons Inc., New York, 1993, pp 200-203
  24. N. Gatica, N. Fernandez, A. Opazo, and D. Radic, J. Chil. Chem. Soc., 50, 581 (2005)
  25. T. T. Mohammad and H. Massumeh, J. Polym. Res., 11, 203 (2004) https://doi.org/10.1023/B:JPOL.0000043406.66299.78