Core-shell Poly(D,L-lactide-co-glycolide )/Poly(ethyl 2-cyanoacrylate) Microparticles with Doxorubicin to Reduce Initial Burst Release

  • Lee, Sang-Hyuk (Nanosphere Process & Technology Laboratory, Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Baek, Hyon-Ho (Nanosphere Process & Technology Laboratory, Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jung-Hyun (Nanosphere Process & Technology Laboratory, Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Choi, Sung--Wook (Department of Biomedical Engineering, Washington University in St. Louis)
  • Published : 2009.12.25

Abstract

Monodispersed microparticles with a poly(D,L-lactide-co-glycolide) (PLGA) core and a poly(ethyl 2-cyanoacrylate) (PE2CA) shell were prepared by Shirasu porous glass (SPG) membrane emulsification to reduce the initial burst release of doxorubicin (DOX). Solution mixtures with different weight ratios of PLGA polymer and E2CA monomer were permeated under pressure through an SPG membrane with $1.9\;{\mu}m$ pore size into a continuous water phase with sodium lauryl sulfate as a surfactant. Core-shell structured microparticles were formed by the mechanism of anionic interfacial polymerization of E2CA and precipitation of both polymers. The average diameter of the resulting microparticles with various PLGA:E2CA ratios ranged from 1.42 to $2.73\;{\mu}m$. The morphology and core-shell structure of the microparticles were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The DOX release profiles revealed that the microparticles with an equivalent PLGA:E2CA weight ratio of 1:1 exhibited the optimal condition to reduce the initial burst of DOX. The initial release rate of DOX was dependent on the PLGA:E2CA ratio, and was minimized at a 1:1 ratio.

Keywords

References

  1. R. Bodmeier and J. W. McGinity, Pharm. Res., 4, 465 (1987) https://doi.org/10.1023/A:1016419303727
  2. K. Juni, J. Ogata, M. Nakano, T. Ichihara, K. Mori, and M. Akagi, Chem. Pharm. Bull., 33, 313 (1985) https://doi.org/10.1248/cpb.33.313
  3. J. M. Ruiz, B. Tissier, and J. P. Benoit, Int. J. Pharm., 49, 69 (1989) https://doi.org/10.1016/0378-5173(89)90154-3
  4. R. Bodmeier and H. Chen, J. Pharm. Pharmacol., 40, 754 (1988) https://doi.org/10.1111/j.2042-7158.1988.tb05166.x
  5. D. L. Wise, G. J. McCormick, G. P. Willet, and L. C. Anderson, Life Sci., 19, 867 (1976) https://doi.org/10.1016/0024-3205(76)90314-3
  6. K. A. Athanasiou, G. G. Niederauer, and C. M. Agrawal, Biomaterials, 17, 93 (1996) https://doi.org/10.1016/0142-9612(96)85754-1
  7. R. Jalil and J. R. Nixon, J. Microencap., 7, 297 (1990) https://doi.org/10.3109/02652049009021842
  8. H. Okada, M. Miyamoto, T. Heya, Y. Inoue, S. Kamei, Y. Ogawa, and H. Taguchi, J. Control. Release, 28, 121 (1994) https://doi.org/10.1016/0168-3659(94)90159-7
  9. M. O. Omelczuk and J. W. McGinity, Pharm. Res., 9, 26 (1992) https://doi.org/10.1023/A:1018967424392
  10. S. S. Shah, Y. Cha, and C. G. Pitt, J. Control. Release, 38, 261 (1992)
  11. K. J. Pekarek, J. S. Jacob, and E. Mathiowitz, Mater. Res. Soc. Symp. Proc., 331, 97 (1994)
  12. A. Kishida, K. Murakami, H. Goto, M. Akashi, H. Kubita, and T. Endo, J. Bioact. Compat. Polym., 13, 270 (1998) https://doi.org/10.1177/088391159801300403
  13. K. Shiga, N. Muramatsu, and T. Kondo, J. Pharm. Pharmacol., 48, 891 (2002)
  14. L. Y. Chu, S. H. Park, T. Yamaguchi, and S. I. Nakao, Langmuir, 18, 1856 (2002) https://doi.org/10.1021/la011385h
  15. C. Y. Huang and Y. D. Lee, Int. J. Pharm., 325, 132 (2006) https://doi.org/10.1016/j.ijpharm.2006.06.008
  16. S. Gibaud, C. Rousseau, C. Weingarten, R. Favier, L. Douay, J. Andreux, and P. Couvreur, J. Control. Release, 52, 131 (1998) https://doi.org/10.1016/S0168-3659(97)00194-6
  17. W. R. Vezin and A. T. Florence, J. Biomed. Mater. Res., 14, 93 (1980) https://doi.org/10.1002/jbm.820140202
  18. F. Leonard, R. K. Kulkarni, G. Brandes, J. Nelson, and J. J. Cameron, J. Appl. Polym. Sci., 10, 259 (1966) https://doi.org/10.1002/app.1966.070100208
  19. R. H. Müller, C. Lherm, J. Herbort, T. Blunk, and P. Couvreur, Int. J. Pharm., 84, 1 (1992) https://doi.org/10.1016/0378-5173(92)90209-K
  20. V. Lenaerts, P. Couvreur, D. Christiaens-Leyh, E. Joiris, M. Roland, B. Rollman, and P. Speiser, Biomaterials, 5, 65 (1984) https://doi.org/10.1016/0142-9612(84)90002-4
  21. D. Scherer, J. R. Robinson, and J. Kreuter, Int. J. Pharm., 101, 165 (1994) https://doi.org/10.1016/0378-5173(94)90086-8
  22. C. O’Sullivan and C. Birkinshaw, Polym. Degrad. Stabil., 78, 7 (2002) https://doi.org/10.1016/S0141-3910(02)00113-1
  23. M. E. Page-Clisson, H. Pinto-Alphandary, M. Ourevitch, A. Andremont, and P. Couvreur, J. Control. Release, 56, 23 (1998) https://doi.org/10.1016/S0168-3659(98)00065-0
  24. C. O’Sullivan and C. Birkinshaw, Biomaterials, 25, 4375 (2004) https://doi.org/10.1016/j.biomaterials.2003.11.001
  25. L. Y. Chu, R. Xie, J. H. Zhu, W. M. Chen, T. Yamaguchi, and S. I. Nakao, J. Colloid Interf. Sci., 265, 187 (2003) https://doi.org/10.1016/S0021-9797(03)00350-3
  26. N. Behan, C. Birkinshaw, and N. Clarke, Biomaterials, 22, 1335 (2001) https://doi.org/10.1016/S0142-9612(00)00286-6
  27. S. Omi, T. Senba, M. Nagai, and G.-H. Ma, J. Appl. Polym. Sci., 79, 2200 (2001) https://doi.org/10.1002/1097-4628(20010321)79:12<2200::AID-APP1028>3.0.CO;2-P
  28. S. W. Choi, H. Y. Kwon, W. S. Kim, and J. H. Kim, Colloid Surface A, 201, 283 (2002) https://doi.org/10.1016/S0927-7757(01)01042-1
  29. J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook, 4th edition, Vol. 1, p. 708
  30. B. S. Zolnik and D. J. Burgess, J. Control. Release, 122, 338 (2007) https://doi.org/10.1016/j.jconrel.2007.05.034
  31. A. Bootz, T. Russ, F. Gores, M. Karas, and J. Kreuter, Eur. J. Pharm. Biopharm., 60, 391 (2005) https://doi.org/10.1016/j.ejpb.2005.02.009