DSC Analysis on Water State of Salvia Hydrogels

  • Yudianti, Rike (Research Centre for Physics, Indonesian Institute of Sciences) ;
  • Karina, Myrtha (Research Centre for Physics, Indonesian Institute of Sciences) ;
  • Sakamoto, Masahiro (Laboratory of Forest Biochemistry, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University) ;
  • Azuma, Jun-Ichi (Laboratory of Forest Biochemistry, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University)
  • Published : 2009.12.25

Abstract

The role of the water structure present in hydrogels from nutlets of three species of salvias, S. miltiorrhiza (SM), S. sclarea (SS) and S. viridis (SV), was analyzed by differential scanning calorimetry (DSC). The sharp endothermic peaks that appeared at $5.9^{\circ}C$ (SM), $2.8^{\circ}C$ DC (SS) and $1.8^{\circ}C$ (SV) in each 1.0% hydrogel of 10.4-15.8% were not affected by addition of 0.1 M urea and alkali-metal salts. The order-disorder portions in the network were slightly affected by the distribution of freezable and non-freezable water in the hydrogel networks. The SV hydrogel was further used to investigate the effects of additives (0.1-8.0 M urea and 0.1-5.0 M NaCl) on its melting behavior. At 0.5-4.0 M urea and 1.0-3.0 M NaCl, two endothermic peaks appeared, corresponding to unbound (high temperature) and bound (low temperature) water in the gel networks, and eventually merged into one endothermic peak at 5.0-8.0 M urea and 4.0-4.5 M NaCl. After this merger, the endothermic peak shifted to 3.7, 4.0 and $5.6^{\circ}C$ at 5.0, 6.0 and 8.0 M urea, respectively. In the case of NaCl, a combination of peaks that occurred at 4.0-4.5 M were accompanied by a shift to lower temperature (-14.4 and $15.3^{\circ}C$) and the endothermic peak finally disappeared at 5.0 M NaCl due to the strong binding of water in the gel networks.

Keywords

References

  1. R. Yudianti, L. Indrarti, M. Sakamoto, and J. Azuma, Proceedings of The 5th International Wood Science Symposium, p.199 (2004)
  2. R. Yudianti, L. Indrarti, M. Sakamoto, and J. Azuma, Proceedings of The 6th International Wood Science Symposium, p.273 (2005)
  3. R. Yudianti, L. Indrarti, M. Karina, M. Sakamoto, and J. Azuma, J. Trop. Wood Sci. Technol., 5, 12 (2007)
  4. R. Candrasekaran, A. Radha, andV. G. Thailambal, Carbohydr. Res., 224, 1 (1992) https://doi.org/10.1016/0008-6215(92)84088-A
  5. E. Loizou, J. T. Weisser, A. Dundigalla, and G. Schmidt, Macromol. Biosci., 6, 711 (2006) https://doi.org/10.1002/mabi.200600097
  6. M. A. Torres, M. M. Beppu, and E. J. Arruda, Brazilian J. Food Technol., 9, 101 (2006)
  7. W.-III. Cha, S.-H. Hyon, and Y. Ikada, Macromol. Chem., 194, 2433 (1993) https://doi.org/10.1002/macp.1993.021940902
  8. A. Yamada-Nosaka, K. Ishikiriyama, M. Todoki, and H. Tanzawa, J. Appl. Polym. Sci., 39, 2443 (1990) https://doi.org/10.1002/app.1990.070391117
  9. Y.-L. Guan, L. Shao, and K.-D. Yao, J. Appl. Polym. Sci., 61, 2325 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960926)61:13<2325::AID-APP11>3.0.CO;2-3
  10. M. N. Khalid, F. Agnely, N. Yagaubi, J. L. Grossiord, and G. Couarraze, Eur. J. Pharm. Sci., 15, 425 (2002) https://doi.org/10.1016/S0928-0987(02)00029-5
  11. T. Hatakeyama, C. Ueda, and H. Hatakeyama, J. Therm. Anal. Calorim., 85, 661 (2006) https://doi.org/10.1007/s10973-006-7641-z
  12. Y. L. Guan, L. Shao, and K. D. Yao, J. Appl. Polym. Sci., 61, 2325 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960926)61:13<2325::AID-APP11>3.0.CO;2-3
  13. X. Qu, A. Wirsen, and A.-C. Albertsson, Polymer, 41, 4589 (2000) https://doi.org/10.1016/S0032-3861(99)00685-0
  14. Z. H. Ping, Q. T. Nguyen, S. M. Chen, J. Q. Zhou, and Y. D. Ding, J. Polym., 42, 8461 (2001) https://doi.org/10.1016/S0032-3861(01)00358-5
  15. W. Li, F. Xue, and R. Cheng, J. Polym., 46, 12026 (2005) https://doi.org/10.1016/j.polymer.2005.09.016
  16. S. J. Lue and S.-J. Shieh, J. Polym., 50, 654 (2009) https://doi.org/10.1016/j.polymer.2008.11.026
  17. R. Yudianti, M. Karina, M. Sakamoto, and J. Azuma, Macromol. Res., 17, 332 (2009) https://doi.org/10.1007/BF03218871
  18. H. Yoshida, T. Hatakeyama, and H. Hatakeyama, Therm. Anal., 40, 483 (1992)
  19. T. Nakaoki and S. Harada, Polym. J., 37, 429 (2005)
  20. M. Annaka, K. Motokawa, and T. Nakahira, J. Appl. Phys., 39, 6643 (2000) https://doi.org/10.1143/JJAP.39.6643