The Effect of Oligomer Blending on the Flow Properties of Polycarbonate

  • Cho, Sung-Hwan (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Sun-Mi (Advanced Polymeric Materials R&D Center, Samyang Corporation) ;
  • Cho, Mi-Suk (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Lee, Young-Kwan (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Dong-Min (Department of Materials Science and Engineering, Hongik University) ;
  • Kim, Whan-Gi (Department of Applied Chemistry, Konkuk University)
  • Published : 2009.12.25

Abstract

We successfully prepared high-flow polycarbonate (PC) by blending commercial PC with a low molecular weight PC oligomer. The oligomer was synthesized by the addition of a large quantity of mono functional phenol groups, and the chain end group was reacted with p-tertiary butyl phenol (PTBP) to block the reactivity. The viscosity average molecular weight ($M_v$) for the oligomer was about 4,000-5,000 g/mol, compared to ~19,000 g/mol for the PC blend obtained by blending 10 wt% of the prepared oligomer with the commercial grade PC ($M_v$ of 21,000 g/mol). The blended PC had a melt flow index of 45, which is 2.5 times higher, and a processing temperature that was $20^{\circ}C$ lower, than that of commercial grade PC having a similar $M_v$.

Keywords

References

  1. H. T. Pham, S. Munjal, and C. P. Bosnyak, in Handbook of thermoplastics, O. Olabisi, Ed., Marcel Dekker, New York, 1997
  2. T. M. Madkour, in Polymer data handbook, J. E. Mark, Ed., Oxford University Press, New York, 1999
  3. H. T. Pham, C. L. Weckle, and J. M. Ceraso, Adv. Mater., 12, 1881 (2000) https://doi.org/10.1002/1521-4095(200012)12:23<1881::AID-ADMA1881>3.0.CO;2-6
  4. H. Schnell, in Chemistry and physics of PC, Interscience, New York, 1964
  5. C. Nguyen and J. Kim, Macromol. Res., 16, 620 (2008) https://doi.org/10.1007/BF03218570
  6. S. Li, P. K. Jarvela, and P. A. Jarvela, J. Appl. Polym. Sci., 71, 1649 (1999)
  7. T. T Hsieh, C. Tiu, K. H. Hsieh, and G. P. Simon, J. Appl. Polym. Sci., 77, 2319 (2000) https://doi.org/10.1002/1097-4628(20000906)77:10<2319::AID-APP26>3.0.CO;2-#
  8. L. Jiang, Y. C. Lam, and J. Zhang, J. Polym. Sci. Part B: Polym. Phys., 43, 2683 (2005) https://doi.org/10.1002/polb.20557
  9. C. Liu, C. Li, P. Chen, J. He, and Q. Fan, Polymer, 45, 2803 (2004) https://doi.org/10.1016/j.polymer.2004.02.030
  10. G. G. Liang, W. D. Cook, H. J. Sautereau, and A. Tcharkhtchi, Eur. Polym. J., 44, 366 (2008) https://doi.org/10.1016/j.eurpolymj.2007.11.007
  11. J. Kroschwitz, in Encyclopedia of polymer science and engineering, Wiley, New York, 1985
  12. E. Yoshida and M. Nakamora, Polym. J., 30, 915 (1998) https://doi.org/10.1295/polymj.30.915
  13. E. Ranucci and P. Ferruti, Macromolecules, 24, 3747(1991) https://doi.org/10.1021/ma00013a002
  14. V. Marousek, P. Svoboda, and J. Kralicek, Angew Makromol. Chem., 178, 85 (1990) https://doi.org/10.1002/apmc.1990.051780106
  15. S. Munjai, Polym. Eng. Sci., 34, 93 (1994) https://doi.org/10.1002/pen.760340204
  16. L. P. Fontana, K. F. Miller, A. A. Clasen, P. W. van Es, T. O. N. de Vroomen, C. B. Quinn, and R. W. Campbell, U. S. Pat. 5,321,114 (1994)
  17. M. Okamoto, Polymer, 42, 8355 (2001) https://doi.org/10.1016/S0032-3861(01)00345-7
  18. H. T. Pham, C. P. Bosnyak, J. W. Wilchester, and C. P. Christenson, J. Appl. Polym. Sci., 48, 1425 (1993) https://doi.org/10.1002/app.1993.070480811