DOI QR코드

DOI QR Code

Structural and Optical Properties of Sol-gel Derived MgxZn1-x Thin Films

  • Kim, In-Soo (School of New Materials Science and Engineering, Yonsei University) ;
  • Kim, Do-Yun (School of New Materials Science and Engineering, Yonsei University) ;
  • Choi, Se-Young (School of New Materials Science and Engineering, Yonsei University)
  • Published : 2009.03.27

Abstract

In this report, the structural and optical properties of sol-gel derived $Mg_xZn_{1-x}O$ thin films upon changes in the composition and annealing temperature were investigated. The $Mg^{2+}$ content and the annealing temperature were varied in the range of $0{\leq}x{\leq}0.35$ and $400^{\circ}C{\leq}T{\leq}600^{\circ}C$, respectively. The films exhibited a hexagonal wurtzite structure of a polycrystalline nature. The optical transmittance exceeded 85% and the optical band gap of the film was tuned as high as 3.84 eV at a value of x = 0.35 (annealed at $400^{\circ}C$), which was evidently the maximum $Mg^{2+}$ content for the single-phase polycrystalline $Mg_xZn_{1-x}O$ thin films prepared in this experiment. The optical band gap and photoluminescence emission were tailored to the higher energy side while maintaining crystallinity without a significant change of the lattice constant.

Keywords

References

  1. Y. Ogawa, and S. Fujihara, J. Electrochem. Soc., 154, 9, J283 (2007) https://doi.org/10.1149/1.2756372
  2. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, Appl. Phys. Lett., 70, 2230 (1997) https://doi.org/10.1063/1.118824
  3. S. Chakrabarti, D. Ganguli and S. Chaudhuri, J. Phys. D., 36, 146 (2003) https://doi.org/10.1088/0022-3727/36/2/311
  4. V. Srikant, and D. R. Clarke, J. Appl. Phys., 83, 5447 (1998) https://doi.org/10.1063/1.367375
  5. R. Krump, S. O. Ferreira, W. Fashinger, G. Brunthaler and H. Sitter, Mater. Sci. Forum, 182, 349 (1995) https://doi.org/10.4028/www.scientific.net/MSF.182-184.349
  6. R. D. Shannon, Acta Crystallogr. Sect. A, 32, 145 (1976) https://doi.org/10.1107/S0567739476001551
  7. E. R. Segnit and A. E. Holland, J. Am. Ceram. Soc., 48, 412 (1965) https://doi.org/10.1111/j.1151-2916.1965.tb14778.x
  8. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, Appl. Phys. Lett., 72, 2466 (1998) https://doi.org/10.1063/1.121384
  9. S. Heitsch, G. Benndorf, G. Zimmermann, C. Schulz, D. Spemann, H. Hochmuth, H. Schmidt, T. Nobis, M. Lorenz and M. Grundmann, Appl. Phys. A, 88, 99 (2007) https://doi.org/10.1007/s00339-007-3953-5
  10. J. Zhu, A. Y. Kuznetsov, M. S. Han, Y. S. Park, H. K. Ahn, J. W. Ju and I. H. Lee, Appl. Phys. Lett., 90, 211909 (2007) https://doi.org/10.1063/1.2742574
  11. T. Gruber, C. Kirchner, R. Kling, F. Reuss and A. Waag, Appl. Phys. Lett., 84, 5359 (2004) https://doi.org/10.1063/1.1767273
  12. E. Y. Jung, S. G. Lee, S. H. Sohn, D. K. Lee, and H. K. Kim, Appl. Phys. Lett., 86, 153503 (2005) https://doi.org/10.1063/1.1899238
  13. W. I. Park, G. C. Yi and H. M. Jang, Appl. Phys. Lett., 79, 2022 (2001) https://doi.org/10.1063/1.1405811
  14. D. Zhao, Y. Liu, D. Shen, Y. Lu, J. Zhang and X. Fan, J. Appl. Phys., 90, 5561 (2001) https://doi.org/10.1063/1.1413948
  15. R. Gosh and D. Basak, J. Appl. Phys., 101, 023507 (2007) https://doi.org/10.1063/1.2426380
  16. A. K. Sharma, J. Narayan, J. F. Muth, C. W. Teng, C. Jin, A. Kvit, R. M. Kolbas and O. W. Holland, Appl. Phys. Lett., 75, 3327 (1999) https://doi.org/10.1063/1.125340
  17. T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura and Y. Hamakawa, Thin Solid Films, 372, 173 (2000) https://doi.org/10.1016/S0040-6090(00)01009-9
  18. S. A. Studenikin, Michael Cocivera, W. Kellner and H. Pascher, J. Lumin., 91, 223 (2000) https://doi.org/10.1016/S0022-2313(00)00213-1
  19. E. Tomzig and R. Helbig, J. Lumin., 14, 403 (1976) https://doi.org/10.1016/S0022-2313(76)91392-2
  20. Z. K. Tang, Q. K. L. Wong and P. Yu, Appl. Phys. Lett., 72, 3270 (1998) https://doi.org/10.1063/1.121620
  21. T. Matsumoto, H. Kato, K. Miyamoto, M. Sano and E. A. Zhukov Appl. Phys. Lett., 81, 1231 (2002) https://doi.org/10.1063/1.1499991
  22. S. Chakrabarti, S. Kar, A. Dev and S. Chaudhuri, Phys. Stat. Sol. (a), 202, 441 (2005) https://doi.org/10.1002/pssa.200406925
  23. B. Lin, Z. Fu and Y. Jia, Appl. Phys. Lett., 79, 943 (2001) https://doi.org/10.1063/1.1394173
  24. H. S. Kang, J. S. Kang, J. W. Kim and S. Y. Lee, J. Appl. Phys., 95, 1246 (2004) https://doi.org/10.1063/1.1633343
  25. E. C. Lee, Y. S. Kim, Y. G. Jin and K. J. Chang, Physica B, 308, 912 (2001) https://doi.org/10.1016/S0921-4526(01)00838-9
  26. A. V. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh and A. Meijerink, J. Lumin., 90, 123 (2000) https://doi.org/10.1016/S0022-2313(99)00599-2