DOI QR코드

DOI QR Code

Induction of cancer cell-specific death via MMP2 promoterdependent Bax expression

  • Seo, Eun-Jeong (Department of Life Science, The University of Seoul) ;
  • Kim, Se-Woon (Department of Life Science, The University of Seoul) ;
  • Jho, Eek-hoon (Department of Life Science, The University of Seoul)
  • Published : 2009.04.30

Abstract

Controlled gene expression in specific cells is a valuable tool for gene therapy. We attempted to determine whether the lentivirus-mediated Tet-On inducible system could be applied to cancer gene therapy. In order to select the genes that induce cancer cell death, we compared the ability of the known pro-apoptotreic genes, Bax and tBid, and a cell cycle inhibitor, p21cip1/waf1, and determined that Bax was the most effective. For the cancer cell-specific expression of $rtTA2^S$-M2, we tested the matrix metalloproteinase-2 (MMP-2) promoter and determined that it is highly expressed in cancer cell lines, including SNU475 cells. The co-transduction of two lentiviruses that contain sequences for TRE-Bax and $rtTA2^S$-M2, the expression of which is controlled by the MMP-2 promoter, resulted in the specific cell death of SNU475, whereas other cells with low MMP-2 expression did not evidence significant cell death. Our data indicate that the lentivirus-mediated Tet-On system using the cancer-specific promoter is applicable for cancer gene therapy.

Keywords

References

  1. Verma, I. M. and Weitzman, M. D. (2005) Gene therapy: twenty-first century medicine. Annu. Rev. Biochem. 74, 711-738 https://doi.org/10.1146/annurev.biochem.74.050304.091637
  2. Flotte, T. R. (2007) Gene therapy: the first two decades and the current state-of-the-art. J. Cell Physiol. 213, 301-305 https://doi.org/10.1002/jcp.21173
  3. Low, P. S., Henne, W. A. and Doorneweerd, D. D. (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res. 41, 120-129 https://doi.org/10.1021/ar7000815
  4. Haley, B. and Frenkel, E. (2008) Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. 26, 57-64 https://doi.org/10.1016/j.urolonc.2007.03.015
  5. Gu, J. and Fang, B. (2003) Telomerase promoter-driven cancer gene therapy. Cancer Biol. Ther. 2, S64-70 https://doi.org/10.4161/cbt.192
  6. Yun, H. J., Cho, Y. H., Moon, Y., Park, Y. W., Yoon, H. K., Kim, Y. J., Cho, S. H., Lee, Y. I., Kang, B. S., Kim, W. J., Park, K. and Seo, W. (2008) Transcriptional targeting of gene expression in breast cancer by the promoters of protein regulator of cytokinesis 1 and ribonuclease reductase 2. Exp. Mol. Med. 40, 345-353 https://doi.org/10.3858/emm.2008.40.3.345
  7. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W. and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766-1769 https://doi.org/10.1126/science.7792603
  8. Orth, P., Schnappinger, D., Hillen, W., Saenger, W. and Hinrichs, W. (2000) Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat. Struct. Biol. 7, 215-219 https://doi.org/10.1038/73324
  9. Lin, J., Page, C., Jin, X., Sethi, A. O., Patel, R. and Nunez, G. (2001) Suppression activity of pro-apoptotic gene products in cancer cells, a potential application for cancer gene therapy. Anticancer Res. 21, 831-839
  10. Gu, J., Zhang, L., Huang, X., Lin, T., Yin, M., Xu, K., Ji, L., Roth, J. A. and Fang, B. (2002) A novel single tetracycline-regulative adenoviral vector for tumor-specific Bax gene expression and cell killing in vitro and in vivo. Oncogene 21, 4757-4764 https://doi.org/10.1038/sj.onc.1205582
  11. Chien, A. L. and Pihie, A. H. (2003) Styrylpyrone derivative induces apoptosis through the up-regulation of Bax in the human breast cancer cell line MCF-7. J. Biochem. Mol. Biol. 36, 269-274 https://doi.org/10.5483/BMBRep.2003.36.3.269
  12. Izawa, H., Yamamoto, H., Damdinsuren, B., Ikeda, K., Tsujie, M., Suzuki, R., Kitani, K., Seki, Y., Hayashi, T., Takemasa, I., Ikeda, M., Ohue, M., Sekimoto, M., Monden, T. and Monden, M. (2005) Effects of p21cip1/waf1 overexpression on growth, apoptosis and differentiation in human colon carcinoma cells. Int. J. Oncol. Vol. 27, 69-76
  13. Seo, Y. W., Park, S. Y., Yun, C. W. and Kim, T. H. (2006) Differential efflux of mitochondrial endonuclease G by hNoxa and tBid. J. Biochem. Mol. Biol. 39, 556-559 https://doi.org/10.5483/BMBRep.2006.39.5.556
  14. Klein, G., Vellenga, E., Fraaije, M. W., Kamps, W. A. and de Bont, E. S. (2004) The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit. Rev. Oncol. Hematol. 50, 87-100 https://doi.org/10.1016/j.critrevonc.2003.09.001
  15. Hanemaaijer, R., Verheijen, J. H., Maguire, T. M., Visser, H., Toet, K., McDermott, E., O'Higgins, N. and Duffy, M. J. (2000) Increased gelatinase-A and gelatinase-B activities in malignant vs. benign breast tumors. Int. J. Cancer 86, 204-207 https://doi.org/10.1002/(SICI)1097-0215(20000415)86:2<204::AID-IJC9>3.0.CO;2-6
  16. Schmalfeldt, B., Prechtel, D., Harting, K., Spathe, K., Rutke, S., Konik, E., Fridman, R., Berger, U., Schmitt, M., Kuhn, W. and Lengyel, E. (2001) Increased expression of matrix metalloproteinases (MMP)-2, MMP-9, and the urokinase- type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clin. Cancer Res. 7, 2396-2404
  17. Sheen-Chen, S. M., Chen, H. S., Eng, H. L., Sheen, C. C. and Chen, W. J. (2001) Serum levels of matrix metalloproteinase 2 in patients with breast cancer. Cancer Lett. 173, 79-82 https://doi.org/10.1016/S0304-3835(01)00657-7
  18. Koponen, J. K., Kankkonen, H., Kannasto, J., Wirth, T., Hillen, W., Bujard, H. and Yla-Herttuala, S. (2003) Doxycycline-regulated lentiviral vector system with a novel reverse transactivator rtTA2S-M2 shows a tight control of gene expression in vitro and in vivo. Gene. Ther. 10, 459-466 https://doi.org/10.1038/sj.gt.3301889
  19. Miyoshi, H., Blomer, U., Takahashi, M., Gage, F. H. and Verma, I. M. (1998) Development of a self-inactivating lentivirus vector. J. Virol. 72, 8150-8157
  20. Fagotto, F., Jho, E., Zeng, L., Kurth, T., Joos, T., Kaufmann, C. and Costantini, F. (1999) Domains of axin involved in protein-protein interactions, Wnt pathway inhibition, and intracellular localization. J. Cell Biol. 145, 741-756 https://doi.org/10.1083/jcb.145.4.741
  21. Lyu, J., Costantini, F., Jho, E. H. and Joo, C. K. (2003) Ectopic expression of Axin blocks neuronal differentiation of embryonic carcinoma P19 cells. J. Biol. Chem. 278, 13487-13495 https://doi.org/10.1074/jbc.M300591200
  22. Naldini, L., Blomer, U., Gage, F. H., Trono, D. and Verma, I. M. (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. U.S.A. 93, 11382-11388 https://doi.org/10.1073/pnas.93.21.11382
  23. Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L. and Trono, D. (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871-875 https://doi.org/10.1038/nbt0997-871
  24. Lewis, B. C., Chinnasamy, N., Morgan, R. A. and Varmus, H. E. (2001) Development of an avian leukosis-sarcoma virus subgroup A pseudotyped lentiviral vector. J. Virol. 75, 9339-9344 https://doi.org/10.1128/JVI.75.19.9339-9344.2001

Cited by

  1. Lentiviral Vectors in Gene Therapy: Their Current Status and Future Potential vol.58, pp.2, 2010, https://doi.org/10.1007/s00005-010-0063-4
  2. Main Pro-Apoptotic Member of BCL-2 Family Proteins-BAX vol.6, pp.-1, 2010, https://doi.org/10.2478/v10107-009-0004-3
  3. Target gene therapy of glioma: overexpression of BAX gene under the control of both tissue-specific promoter and hypoxia-inducible element vol.42, pp.4, 2010, https://doi.org/10.1093/abbs/gmq016