DOI QR코드

DOI QR Code

pH-Dependent surface-enhanced resonance Raman scattering of yeast iso-1-cytochrome c adsorbed on silver nanoparticle surfaces under denaturing conditions at pH < 3

  • Lee, So-Yeong (Department of Pharmacology, College of Veterinary Medicine, Seoul National University) ;
  • Joo, Sang-Woo (Department of Chemistry, Soongsil University) ;
  • Lee, Seong-Hoon (School of Chemistry and Molecular Engineering, Seoul National University) ;
  • Lim, Man-Ho (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National Unversity)
  • Published : 2009.04.30

Abstract

We measured the pH-induced spectral changes of yeast iso-1-cytochrome c on silver nanoparticle surfaces using surface-enhanced resonance Raman scattering (SERRS) at 457.9 nm. At a pH of ~3, the Met80 ligand in yeast iso-1-cytochrome c is assumed to dissociate, leading to a marked conformational change as evidenced by the vibrational spectral shifts. The Soret band at ~410 nm in the UV-Vis spectrum shifted to ~396 nm at pH~3, indicating a transition from a low spin state to a high spin state from a weak interaction with a water molecule. Thus, SERRS spectroscopy can measure the pH-induced denaturalization of cyt c adsorbed on metal nanoparticle surfaces at a lower concentration with a better sensitivity than ordinary resonance Raman spectroscopy.

Keywords

References

  1. Harper, S. M., Neil, L. C. and Gardner, K. H. (2003) Structural basis of a phototropin light switch. Science 301, 1541-1544 https://doi.org/10.1126/science.1086810
  2. Green, D. R. and Reed, J. C. (1998) Mitochondria and apoptosis. Science 281, 1309-1312 https://doi.org/10.1126/science.281.5381.1309
  3. Seo, Y. W., Park, S. Y., Yun, C. W. and Kim, T. H. (2006) Differential efflux of mitochondrial endonuclease G by hNoxa and tBid. JBMB 39, 556-559 https://doi.org/10.5483/BMBRep.2006.39.5.556
  4. Kim, N. H. and Kang, J. H. (2006) Oxidative damage of DNA induced by the cytochrome c and hydrogen peroxide system. JBMB 39, 452-456 https://doi.org/10.5483/BMBRep.2006.39.4.452
  5. Park, Y. J., Yoo, C. B., Choi, S. Y. and Lee, H. B. (2006) Purifications and characterizations of a ferredoxin and its related 2-oxoacid: ferredoxin oxidoreductase from the hyperthermophilic archaeon, sulfolobus solfataricus P1. JBMB 39, 46-54 https://doi.org/10.5483/BMBRep.2006.39.1.046
  6. Park, J. H. and Kim, T. H. (2005) Release of cytochrome c from isolated mitochondria by etoposide. JBMB 38, 619-623 https://doi.org/10.5483/BMBRep.2005.38.5.619
  7. Balakrishnan, G., Hu, Y., Oyerinde, O. F., Su, J., Grove, J. T. and Spiro, T. G. (2007) Conformational switch to $\beta$-sheet structure in cytochrome c leads to heme exposure. Implications for cardiolipin peroxidation and apoptosis. J. Am. Chem. Soc. 129, 504-505 https://doi.org/10.1021/ja0678727
  8. Rivas, L., Murgida, D. H. and Hildebrandt, P. (2001) Surface-enhanced resonance Raman study of cytochrome c from Methylophilus methylotrophus. J. Mol. Struct. 565-566, 193-196 https://doi.org/10.1016/S0022-2860(00)00850-4
  9. Godbole, S. and Bowler, B. E. (1999) Effect of pH on formation of a nativelike intermediate on the unfolding pathway of a Lys 73→His variant of yeast iso-1-cytochrome c. Biochemistry 38, 487-495 https://doi.org/10.1021/bi981698k
  10. Godbole, S., Hammack, B. and Bowler, B. E. (2000) Measuring denatured state energetics: deviations from random coil behavior and implications for the folding of iso-1-cytochrome c. J. Mol. Biol. 296, 217-228 https://doi.org/10.1006/jmbi.1999.3454
  11. Siebert, F. and Hildebrandt, P. (2008) Vibrational Spectroscopy in Life Science, Wiley-VCH, Verlag
  12. Schweitzer-Stenner, R., Huang, Q., Hagarman, A., Laberge, M. and Wallace, C. J. A. (2007) Static normal coordinate deformations of the heme group in mutants of ferrocytochrome c from Saccaromyces cereviciae probed by resonance Raman spectroscopy. J. Phys. Chem. B 111, 6527-6533 https://doi.org/10.1021/jp070445a
  13. Zheng, J., Zho, Q., Zho, Y., Lu, T., Cotton, T. M. and Chumanov, G. (2002) Surface-enhanced resonance Raman spectroscopic study of yeast iso-1-cytochrome c and its mutant. J. Electroanal. Chem. 530, 75-81 https://doi.org/10.1016/S0022-0728(02)01003-3
  14. Blouin, C., Guillemette, J. G. and Wallace, C. J. A. (2001) Resolving the individual components of a pH-induced conformational change. Biophys. J. 81, 2331-2338 https://doi.org/10.1016/S0006-3495(01)75879-1
  15. Chah, S., Hammond, M. R. and Zare, R. N. (2005) Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chem. & Bio. 12, 323 https://doi.org/10.1016/j.chembiol.2005.01.013
  16. Shipway, A. N., Katz, E. and Willner, I. (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem. Phys. Chem. 1, 18-52 https://doi.org/10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L
  17. Patra, H. K., Banerjee, S., Chaudhuri, U., Lahiri, P. and Dasgupta, A. (2007) Cell selective response to gold nanoparticles. Nanomedicine 3, 111 https://doi.org/10.1016/j.nano.2007.03.005
  18. Schatz, G. C. and van Duyne, R. P. (2002) Electromagnetic mechanism of surface-enhanced Raman spectroscopy; in Handbook of Vibrational Spectroscopy, Chalmers, J. M. and Griffiths, P. R. (eds.), pp. 759-774, John Wiley & Sons, New York, USA
  19. Bae, S. J., Lee, C. R., Choi, I. S., Hwang, C. S., Gong, M. S., Kim, K. and Joo, S. W. (2002) Adsorption of 4-biphenylisocyanide on gold and silver nanoparticle surfaces: surface-enhanced Raman scattering study. J. Phys. Chem. B 106, 7076-7080 https://doi.org/10.1021/jp020237c
  20. Lee, C. R., Bae, S. J., Gong, M. S., Kim, K. and Joo, S. W. (2002) Surface-enhanced Raman scattering of 4,4'-dicyanobiphenyl on silver and gold nanoparticle surfaces. J. Raman Spectrosc. 33, 429-433 https://doi.org/10.1002/jrs.873
  21. Joo, S. W., Chung, T. D., Jang, W., Gong, M. S., Geum, N. and Kim, K. (2002) Surface-enhanced Raman scattering of 4-cyanobiphenyl on gold and silver nanoparticle surfaces. Langmuir 18, 8813-8816 https://doi.org/10.1021/la020003k
  22. Cho, K. H., Choo, J. and Joo, S. W. (2005) Surface enhanced Raman scattering and density functional theory calculation of uracil on gold and silver nanoparticle surfaces. Spectrochim. Acta. A. 61, 1141-1145 https://doi.org/10.1016/j.saa.2004.06.032
  23. Cho, K. H., Choo, J. and Joo, S. W. (2005) Tautomerism of thymine on gold and silver nanoparticles surfaces: surface enhanced Raman scattering and density functional calculation study. J. Mol. Struct. 738, 9-14 https://doi.org/10.1016/j.molstruc.2004.11.001
  24. Dick, L. A., Haes, A. J. and van Duyne, R. P. (2000) Distance and orientation dependence of heterogeneous electron transfer: a surface-enhanced resonance Raman scattering study of cytochrome c bound to carboxylic acid terminated alkanethiols adsorbed on silver electrodes. J. Phys. Chem. B 104, 11752-11762 https://doi.org/10.1021/jp0029717
  25. Sage, J. T., Morikis, D. and Champion, P. M. (1991) Spectroscopic studies of myoglobin at low pH: heme structure and ligation. Biochemistry 30, 1227-1237 https://doi.org/10.1021/bi00219a010
  26. Oellerich, S., Wackerbarth, H. and Hildebrandt, P. (2002) Spectroscopic characterization of nonative conformational states of cytochrome c. J. Phys. Chem. B 106, 6566-6580 https://doi.org/10.1021/jp013841g
  27. Lee, P. C. and Meisel, D. (1982) Adsorption and surfaceenhanced Raman dyes on silver and gold sols. J. Phys. Chem. 86, 3391-3395 https://doi.org/10.1021/j100214a025
  28. Lim, J. K. and Joo, S. W. (2007) Excitation-wavelength-dependent charge transfer resonance of bipyridines on silver nanoparticles: surface-enhanced Raman scattering study. Surf. Interf. Anal. 39, 684-690 https://doi.org/10.1002/sia.2577
  29. Lim, J. K. and Joo, S. W. (2006) Gold Nanoparticle-based pH sensor in highly alkaline region at pH >11: surfaceenhanced Raman scattering study. Appl. Spectrosc. 60, 847-852 https://doi.org/10.1366/000370206778062183

Cited by

  1. Surface-enhanced resonance Raman scattering of hemoproteins and those in complicated biological systems vol.141, pp.17, 2016, https://doi.org/10.1039/C6AN01009A