Measurement of Isoelectric Point of Betaine Zwitterionic Surfactant by QCM(Quartz Crystal Microbalance)

QCM(Quartz Crystal Microbalance)을 이용한 Betaine 양쪽성 계면활성제의 등전점 측정

  • Kim, Ji Sung (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Park, Jun Seok (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Lim, Jong Choo (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 김지성 (동국대학교 공과대학 화공생물공학과) ;
  • 박준석 (동국대학교 공과대학 화공생물공학과) ;
  • 임종주 (동국대학교 공과대학 화공생물공학과)
  • Received : 2008.07.02
  • Accepted : 2008.08.03
  • Published : 2009.02.28

Abstract

A zwitterionic surfactant shows not only detergency but also mildness effect since it shows characteristics of a nonionic or an anionic surfactant above an isoelectric point, while showing characteristics of a cationic surfactant below an isoelectric point. Therefore, a zwitterionic surfactant can serve as a dual function surfactant by a single molecule through the interconversion of cleaning and softening effects depending on pH variations of the aqueous solution. In this study, physical properties of betaine surfactant such as CMC, surface tension, interfacial tension, contact angle and viscosity were measured and phase behavior study was performed. Also dual function characteristics of betaine zwitterionic surfactant were investigated by measuring an isoelectric point using QCM(quartz crystal microbalance) and zeta potential measurement. The CMC of betaine surfactant was near $10^{-4}mol/L$ and the surface tension at CMC was about 32 mN/m. The interfacial tension between 1 wt% aqueous solution and n-decane measured by spinning drop tensiometer at pH 2~10 resulted in an increase in interfacial tension until pH 5 and a decrease with pH after 5 and equilibration time showed the similar trend with an increase in pH. The isoelectric point of betaine surfactant measured by QCM experiment was found to exist between 3.0 and 3.3, which is the same as the result determined by zeta potential measurement.

양쪽성 계면활성제는 등전점 이하의 pH 조건에서 양이온 계면활성제로 작용함으로써 유연력을 나타낼 수 있으며, 등전점 이상의 pH 조건에서는 음이온 혹은 비이온 계면활성제로 작용하여 세정력을 나타낼 수 있다. 따라서 pH에 따른 양쪽성 계면활성제의 특성을 활용하면 한 종류의 계면활성제 분자로 세정력과 유연력을 동시에 발휘할 수 있다. 본 연구에서는 betaine 양쪽성 계면활성제에 대하여 계면활성제의 기본적인 물성(CMC, 표면장력, 계면장력, 접촉각, 점도, 계면활성제 시스템의 상거동 등)을 측정하였으며, 또한 계면활성제 수용액에 대하여 QCM(quartz crystal microbalance) 실험과 zeta potential 측정을 통하여 양쪽성 계면활성제가 양이온 계면활성제에서 음이온 계면활성제로 작용이 전환되는 등전점을 결정하였다. Betaine 계면활성제의 CMC는 약 $10^{-4}mol/L$ 이며, CMC에서의 표면장력은 약 32 mN/m이었다. Spinning drop tensiometer를 사용하여 1 wt% 계면활성제 수용액과 n-decane 오일 사이의 계면장력을 pH 2~10의 조건에서 측정한 결과, 계면장력은 pH 5까지 증가하다가 그 이후 감소하는 경향을 보였으며, 평형에 도달하는 시간도 유사한 경향을 나타내었다. 본 연구에서 사용한 betaine 양쪽성 계면활성제의 등전점을 QCM 실험을 통하여 측정한 결과, 등전점은 pH 3.0~3.3에 존재하였으며, 이 결과는 zeta potential 측정 결과와 동일함을 확인하였다.

Keywords

References

  1. McBain, M. E. L. and Hutchinson, E., Solubilization and Related Phenomena, Academic Press, New York(1955)
  2. Oh, S. G., Kim, J. G. and Kim, J. D., "Phase Behavior and Solubilization of 1-Hexanol in the Water-Continuous Phases Containing Surface-Active Compounds," Korean J. Chem. Eng., 4(1), 53-59(1987) https://doi.org/10.1007/BF02698099
  3. Park, S. J., Yoon, H. H. and Song, S. K., "Solubilization and Micellar-Enhanced Ultrafiltration of o-Cresol by Sodium Dodecyl Sulfate Micelles," Korean J. Chem. Eng., 14(4), 233-240(1997) https://doi.org/10.1007/BF02706817
  4. Su, Y. L. and Liu, H. Z., "Temperature-Dependent Solubilization of PEO-PPO-PEO Block Copolymers and Their Application for Extraction Trace Organics from Aqueous Solutions," Korean J. Chem. Eng., 20(2), 343-346(2003) https://doi.org/10.1007/BF02697250
  5. Baek, K., Lee, H. H., Cho, H. J. and Yang, J. W., "Headspace Solid-Phase Microextraction for Determination of Micellar Solubilization of Methyl Tert-Butyl Ether(MTBE)," Korean J. Chem. Eng., 20(4), 698-701(2003) https://doi.org/10.1007/BF02706910
  6. Cutler, W. G. and Kissa, E., Detergency: Theory and Technology, Marcel Dekker, New York(1987)
  7. Ro, Y. C. and Nam, K. D., "Chemical Structural Characteristics of the Amphoteric Immidazoline Surfactants," J. Korean Ind. Eng. Chem., 5(5), 749-755(1994)
  8. Ro, Y. C., Kim, T. Y., Jeong, J. K. and Nam, K. D., 'Synthesis and Surface Active Properties of Amphoteric Surfactant Derivatives(6) - Thermodynamics of Micellization of Amphoteric Surfactant Derivatives -,' J. Korean Ind. Eng. Chem., 7(2), 215-220 (1996)
  9. Ro, Y. C., Lee, S. J. and Nam, K. D., 'Synthesis and Surface Active Properties of Amphoteric Surfactant Derivatives(5) - Basic Properties of Derivatives from Immidazoline -,' J. Korean Ind. Eng. Chem.,6(4), 548-555(1995)
  10. Rendall, K., Tiddy, G. J. T. and Trevethan, M. A., "An Investigation of the Interactions between Electrolytes and a Zwitterionic Surfactant using 23Na and 2H NMR Measurements," J. Colloid Interface Sci., 98(2), 565-571(1984) https://doi.org/10.1016/0021-9797(84)90183-8
  11. Rosen, M. J., Gao, T., Nakasuji, Y. and Masuyama, A., "Synergism in Binary Mixtures of Surfactants 12. Mixtures Containing Surfactants with Two Hydrophilic and Two or Three Hydrophobic Groups," Colloid Surf. A: Physicochem. Eng. Aspects, 88(1),1-11(1994) https://doi.org/10.1016/0927-7757(94)80080-4
  12. Rang, M. J., Lim, J. C., Miller, C. A., Thunig, C. and Hoffmann, H. H., "Dynamic Behavior of Alcohol Drops in Dilute Solutions of an Amine Oxide Surfactant," J. Colloid Interface Sci., 175(2), 440-447(1995) https://doi.org/10.1006/jcis.1995.1474
  13. Harwigsson, I., Tiberg, F. and Chevalier, Y., "Nature of the Adsorption of Zwitterionic Surfactants at Hydrophilic Surfaces," J. Colloid Interface Sci., 183(2), 380-387(1996) https://doi.org/10.1006/jcis.1996.0560
  14. Maria, P. D., Fontana, A., Gasbarri, C. and Siani, G., 'The Effects of Cationic and Zwitterionic Micelles on the Keto-Enol Interconversion of 2 Phenylacetylfuran and 2-Phenylacetylthiophene,' Tetrahedron, 61(30), 7176-7183(2005) https://doi.org/10.1016/j.tet.2005.05.035
  15. Yaseen, M., Lu, J. R., Webster, J. R. P. and Penfold, J., 'Adsorption of Single Chain Zwitterionic Phosphocholine Surfactants: Effects of Length of Alkyl Chain and Head Group Linker,' Biophysical chemistry, 117(3), 263-273(2005) https://doi.org/10.1016/j.bpc.2005.06.001
  16. Yaseen, M., Wang, Y., Su, T. J. and Lu, J. R., "Surface Adsorption of Zwitterionic Surfactants: n-Alkyl Phosphocholines Characterised by Surface Tensiometry and Neutron Reflection," J. Colloid Interface Sci., 288(2), 361-370(2005) https://doi.org/10.1016/j.jcis.2005.03.024
  17. Park, J. S. and Lim, J. C., 'Investigation on a Zwitterionic Surfactant Having Ethylene Oxide,' Applied Chem., 10(2), 605-608 (2006)
  18. Han, D. S., Yoo, K. M., Park, J. S., Chi, G. Y., Lee, K. M., Cho, I. S. and Lim, J. C., 'Development of Multi-functional Amine Oxide Type Surfactants,' Applied Chem., 11(1), 229-232(2007) https://doi.org/10.1002/jctb.5010110701
  19. Hoffmann, H., Thunig, C. and Miller, C. A., "The Different Phases and Their Macroscopic Properties in Ternary Surfactant Systems of Alkyldimethylamine Oxides, Intermediate Chain n-Alcohols and Water," Colloid Surf., 67, 223-237(1992) https://doi.org/10.1016/0166-6622(92)80301-H
  20. Nilsson, P. G., Pacynko, W. F. and Tiddy, G. J. T., "Clouding in Zwitterionic Surfactant/Water Systems - the Influence of Additives on the Upper Consolute Loop of the Decyldimethylammonioethane Sulfate/Water System," Current Opinion Colloid Interface Sci., 9(1-2), 117-123(2004) https://doi.org/10.1016/j.cocis.2004.05.015
  21. Limin, Z., Ganzuo, L. and Zhiwei, S., "Spontaneous Vesicle Formation in Aqueous Solution of Zwitterionic and Anionic Surfactant Mixture," Colloid Surf. A: Physicochem. Eng. Aspects, 190(3), 275-283(2001) https://doi.org/10.1016/S0927-7757(01)00693-8
  22. Jeong, M. W., Oh, S. G. and Kim, Y. C., "Effects of Amine and Amine Oxide Compounds on the Zeta-Potential of Emulsion Droplets Stabilized by Phosphatidylcholine," Colloid Surf. A: Physicochem. Eng. Aspects, 181(1-3), 247-253(2001) https://doi.org/10.1016/S0927-7757(00)00796-2
  23. Chiu, T. Y. and James, A. E., "Microfiltration of Amphoteric Surfactant Using Ceramic Membranes," Colloid Surf. A: Physicochem, Eng. Aspects, 280(1-3), 58-65(2006) https://doi.org/10.1016/j.colsurfa.2006.01.030