DOI QR코드

DOI QR Code

Transduced HSP27 protein protects neuronal cell death by enhancing FALS-associated SOD1 mutant activity

  • An, Jae-Jin (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Lee, Yeom-Pyo (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kim, Dae-Won (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Sohn, Eun-Joung (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Jeong, Hoon-Jae (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kang, Hye-Won (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Shin, Min-Jae (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kim, Mi-Jin (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Ahn, Eun-Hee (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Jang, Sang-Ho (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kang, Jung-Hoon (Department of Genetic Engineering, Cheongju University) ;
  • Kang, Tae-Cheon (Department of Anatomy and Neurobiology, College of Medicine, Hallym University) ;
  • Won, Moo-Ho (Department of Anatomy and Neurobiology, College of Medicine, Hallym University) ;
  • Kwon, Oh-Shin (Department of Biochemistry, Kyungpook National University) ;
  • Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Lee, Kil-Soo (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Park, Jin-Seu (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Eum, Won-Sik (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Choi, Soo-Young (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University)
  • Published : 2009.03.31

Abstract

Familial Amyotrophic lateral sclerosis (FALS) is a progressive neurodegenetative disorder induced by mutations of the SOD1 gene. Heat shock protein 27 (HSP27) is well-defined as a stress-inducible protein, however the its role in ALS protection has not yet been established. To investigate the role HSP27 may have in SOD1 mutant-mediated apoptosis, human SOD1 or HSP27 genes were fused with a PEP-1 peptide in a bacterial expression vector to produce a genetic in-frame fusion protein, which was then transduced into cells. We found the purified PEP-1-HSP27 fusion proteins can be transduced efficiently into neuronal cells and protect against cell death by enhancing mutant SOD1 activity. Moreover, transduced PEP-1-HSP27 efficiently prevents protein aggregation produced by oxidative stress. These results suggest that transduced HSP27 fusion protein may be explored as a potential therapeutic agent for FALS patients.

Keywords

References

  1. Mulder, D. W., Kurland, L. T., Offord, K. P. and Beard, C. M. (1986) Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurology 36, 511-517 https://doi.org/10.1212/WNL.36.4.511
  2. Rosen, D. R., Siddigue, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O'Regan, J. P., Deng, H. X., Rahmani, Z., Krizus, A., McKenna-Yasek, D., Cayabyab, A., Gaston, S. M., Berger, R., Tanzi, R. E., Halperin, J. J., Herzfeldt, B., Van den Bergh, R., Hung, W. Y., Bird, T., Deng, G., Mulder, D. W., Smyth, C., Laing, N. G., Soriano, E., Pericak–Vance, M. A., Haines, J., Rouleau, G. A., Gusella, J. S., Horvitz, H. R. and Brown, R. H. Jr. (1993) Mutation in Cu,Zn-superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59-62⨀蠘ᖗ⨀ꠘᖗ⨀ꠘᖗ⨀蠨ᖗ⨀렘ᖗ⨀頨ᖗ⨀?ᖗ⨀ᖗ⨀련ᖗ⨀ᖗ⨀࠙ᖗ⨀⠇ᖗ⨀堇ᖗ⨀⠓ᖗ⨀蠇ᖗ⨀㠓ᖗ⨀㠩ᖗ⨀䠓ᖗ⨀堩ᖗ⨀堓ᖗ⨀젩ᖗ⨀렇ᖗ⨀ᖗ⨀頩ᖗ⨀ꠘᖗ⨀栓ᖗ⨀ᖗ⨀砓ᖗ⨀?ᖗ⨀蠓ᖗ⨀렩ᖗ⨀頓ᖗ⨀ᖗ⨀ꠓᖗ⨀䡇卐䈱弲〰㥟瘲㉮㉟㌰㉟〱㄀䡈䝈䡌弲〰㥟瘴㝮㕟㔳ㅟ〱㜀䡊䍈䈴弲〰㡟瘱㝮㉟㈶㍟〲㤀䡊䡈䉊弲〰㕟瘳㥮㑟㌸㥟〰㠀䡊偈䉎弲〰㑟瘳の㉟ㄶ㝟〱㌀䡊則䈸弲〰㡟瘲㑮㉟㈰㙟〱㈀䡋䉏䈵弲〰㥟瘱㉮㍟㔹弰㈰䡋体䉌弲〰㕟瘱㡮ㅟ㌳弰〹䡋卋䍓弲〰㝟瘲㕮ㅟㅟ〱㘀䡍䩇䉐弲〰㙟瘳㑮㙟ㅟ〰㈀䡍剈䉂弲〰㥟瘵㡮ㅟ㤵弰〶䡎䡈䉂弲〰㕟瘴㡮ㄱ弱㌴㝟〰㤀䡏䝂䈱弲〰㥟瘳ㅮ㑟㌰㕟〴㠀䡏䩂䌰弲〰㍟瘷渷弱㔸㉟〱 䡏䩈䈰弲〰㑟瘱㥮㍳㘷弳㉟〰㐀䡏䵈䉊弲〰㥟瘹㡮㕟㔷㙟〱㌀䡏午䈹弲〰㕟瘳㡮ㅳㄱたㅟ〲㘀䡒体䉅弲〰㕟瘳ㅮㅟ㐷弰ㄳ䡓午䉔弲〰㕟瘱㑮㍟ㄵ㙟〰㄀䩂䍒䑁弲〰㉟瘹䍮㑟㐹㝟〰㔀䩂䍒䕉弲〰㕟瘱㉁渲猹㉟ㄳ㝟〰㤀䩂䍒䝘弲〰㍟瘱い渶弹㈷弰ㄷ䩂䝈䉍弲〰㥟瘲㝮ㄲ弴㉟〱㌀䩂䝈䘳弲〰㝟瘳㑮㥟㜸㕟〲㌀䩂䝈䥆弲〰㉟瘸渳弳㐴弰〳䩂䩃䉒弲〰㍟瘱㕮ㅟ㄰㥟〲㌀䩃䝍䍓弲〰㉟ https://doi.org/10.1038/362059a0
  3. Gaudette, M., Hirano, M. and Siddique, T. (2000) Current status of SOD1 mutations in familial amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other. Mol. Neruon Disord. 1, 83-89 https://doi.org/10.1080/14660820050515377
  4. Andersen, P. M. (2001) Genetics of sporadic ALS. Amyotroph. Lateral Scler. Other. Mol. Neruon Disord. 2(Suppl. 1), S37-41 https://doi.org/10.1080/14660820152415726
  5. Cleveland, D. W. and Rothstein, J. D. (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2, 806-819 https://doi.org/10.1038/35097565
  6. Yenari, M. A., Giffard, R. G., Sapolsky, R. M. and Steinberg, G. K. (1999) The neuroprotective potential of heat shock protein 70 (HSP70). Mol. Med. Today 5, 525-531 https://doi.org/10.1016/S1357-4310(99)01599-3
  7. Kitamura, Y. and Nomura, Y. (2003) Stress proteins and glial functions: possible therapeutic targets for neurodegenerative disorders. Pharmacol. Ther. 97, 35-53 https://doi.org/10.1016/S0163-7258(02)00301-7
  8. Slavotinek, A. M. and Biesecker, L. G. (2001) Unfolding the role of chaperones and chaperonins in human disease. Trends Genet. 17, 528-535 https://doi.org/10.1016/S0168-9525(01)02413-1
  9. Takayama, S., Reed, J. C. and Homma, S. (2003) Heatshock proteins as regulators of apoptosis. Oncogene 22, 9041-9047 https://doi.org/10.1038/sj.onc.1207114
  10. Latchman, D. S. (2005) HSP27 and cell survival in neurons. Int. J. Hyperthermia. 21, 393-402 https://doi.org/10.1080/02656730400023664
  11. Bruening, W., Roy, J., Giasson, B., Figlewicz, D. A., Mushynski, W. E. and Durham, H. D. (1999) Up-regulation of protein chaperones preserves viability of cell expressing toxic Cu,Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J. Neurochem. 72, 693-699 https://doi.org/10.1046/j.1471-4159.1999.0720693.x
  12. Takeuchi, H., Kobayashi, Y., Yoshihara, T., Niwa, J., Doyu, M., Ohtsuka, K. and Sobue, G. (2002) HSP70 and HSP40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Brain Res. 949, 11-22 https://doi.org/10.1016/S0006-8993(02)02568-4
  13. Okado-Matsumoto, A. and Fridovich, I. (2002) Amyotrophic lateral sclerosis: a proposed mechanism. Proc. Natl. Acad. Sci. U.S.A. 99, 9010-9014 https://doi.org/10.1073/pnas.132260399
  14. Shiner, G. A., Lacourse, M. C., Minotti, S. and Durham, H. D. (2001) Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J. Biol. Chem. 276, 12791-12796 https://doi.org/10.1074/jbc.M010759200
  15. Vlemincky, V., van Damme, P., Goffin, K., Delye, H., van Den Bosch, L. and Robberecht, W. (2002) Upregulation of HSP27 in a transgenic model of ALS. J. Neuropathol. Exp. Neurol. 61, 968-974
  16. Maatkamp, A., Vlug, A., Haasdijk, E., Troost, D., French, P. J. and Jaarsma, D. (2004) Decreased of Hsp25 protein expression precedes degeneration of motorneurons in ALS-SOD1 mice. Eur. J. Neurosci. 20, 14-28 https://doi.org/10.1111/j.1460-9568.2004.03430.x
  17. Strey, C. W., Spellman, D., Stieber, A., Gonatas, J. O., Wang, X., Lambris, J. D. and Gonatas, N. K. (2004) Dysregulation of stathmin, a microtubule-destabilizing protein, and up-regulation of Hsp25, Hsp27, and the antioxidant peroxiredoxin 6 in a mouse model of familial amyotrophic lateral sclerosis. Am. J. Pathol. 165, 1701-1718 https://doi.org/10.1016/S0002-9440(10)63426-8
  18. Wadia, J. S. and Dowdy, S. F. (2002) Protein transduction technology. Curr. Opin. Biotechnol. 13, 52-56 https://doi.org/10.1016/S0958-1669(02)00284-7
  19. Fawell, S., Seery, J. and Daikh, Y. (1991) Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. U.S.A. 91, 664-668 https://doi.org/10.1073/pnas.91.2.664
  20. Vives, E., Brodin, P. and Lebleu, B. (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010-16017 https://doi.org/10.1074/jbc.272.25.16010
  21. Prochiantz, A. (2000) Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell Biol. 12, 400-406 https://doi.org/10.1016/S0955-0674(00)00108-3
  22. Eum W. S., Choung, I. S., Li, M. Z., Kang, J. H., Kim, D. W., Park, J., Kwon, H. Y. and Choi, S. Y. (2004) HIV-1 Tat mediated protein transduction of Cu,Zn-superoxide dismutase into pancreatic $^{\circledR}$ cells in vitro and in vivo. Free Radic. Biol. Med. 37, 339-349 https://doi.org/10.1016/j.freeradbiomed.2004.04.036
  23. Eum, W. S., Kim, D. W., Hwang, I. K., Yoo, K. Y., Kang, T. C., Jang, S. H., Choi, H. S., Choi, S. H., Kim, Y. H., Kim, S. Y., Kwon, H. Y., Kang, J. H., Kwon, O. S., Cho, S. W., Lee, K. S., Park, J., Won, M. H. and Choi, S. Y. (2004) In vivo protein transduction: biologically active intact PEP-1-superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic. Biol. Med. 37, 1656-1669 https://doi.org/10.1016/j.freeradbiomed.2004.07.028
  24. Kim, D. W., Eum, W. S., Jang, S. H., Kim, S. Y., Choi, H. S., Choi, S. H., An, J. J., Lee, S. H., Lee, K. S., Han, K., Kang, T. C., Won, M. H., Kang, J. H., Kwon, O. S., Cho, S. W., Kim, T. Y., Park, J. and Choi, S. Y. (2005) Transduced Tat-SOD fusion protein protects against ischemic brain injury. Mol. Cells 19, 88-96
  25. Choi, H. S., An, J. J., Kim, S. Y., Lee, S. H., Kim, D. W., Yoo, K. Y., Won, M. H., Kang, T. C., Kwon, H. J., Kang, J. H., Cho, S. W., Kwon, O. S., Park, J., Eum, W. S. and Choi, S. Y. (2006) PEP-1-SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model. Free Radic. Biol. Med. 41, 1058-1068 https://doi.org/10.1016/j.freeradbiomed.2006.06.006
  26. Choi, S. H., Kim, S. Y., An, J. J., Lee, S. H., Kim, D. W., Ryu, H. J., Lee, N. I., Yeo, S. I., Jang, S. H., Won, M. H., Kang, T. C., Kwon, H. J., Cho, S. W., Kim, J., Lee, K. S., Park, J., Eum, W. S. and Choi, S. Y. (2006) Human PEP-1-ribosomal protein S3 protects against UV-induced skin cell death. FEBS Lett. 580, 6755-6762 https://doi.org/10.1016/j.febslet.2006.11.038
  27. An, J. J., Lee, Y. P., Kim, S. Y., Lee, S. H., Kim, D. W., Lee, M. J., Jeong, M. S., Jang, S. H., Kang, J. H., Kwon, H. Y., Kang, T. C., Won, M. H., Cho, S. W., Kwon, O. S., Lee, K. S., Park, J., Eum, W. S. and Choi, S. Y. (2008) Transduction of familial amyotrophic lateral sclerosis-related mutant PEP-1-SOD proteins into neuronal cells. Mol. Cells 25, 55-63
  28. An, J. J., Lee, Y. P., Kim, S. Y., Lee, S. H., Lee, M. J., Jeong, M. S., Kim, D. W., Jang, S. H., Yoo, K. Y., Won, M. H., Kang, T. C., Kwon, O. S., Cho, S. W., Lee, K. S., Park, J., Eum, W. S. and Choi, S. Y. (2008) Transduced human PEP-1-heat shock protein 27 efficiently protects against brain ischemic insult. FEBS J. 275, 1296-1308 https://doi.org/10.1111/j.1742-4658.2008.06291.x
  29. Richard, J. P., Melikov, K., Vives, E., Rmos, C., Vereure, B., Gait, M. J., Chernomordik, L. V. and Lebleu, B. (2003) Cell penetrating peptides: a reevaluaation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585-590
  30. Cashman, S. M., Morris, D. J. and Kuman-Singh, R. (2003). Evidence of protein transduction but not intracellular by protein fused to HIV Tat in retinal cell culture and in vivo. Mol. Ther. 8, 130-142 https://doi.org/10.1016/S1525-0016(03)00131-X
  31. Jakob, U. and Buchner, J. (1994) Assisting spontaneity: the role of HSP90 and small HSPs as molecular chaperones. Trends Biochem. Sci. 19, 205-211 https://doi.org/10.1016/0968-0004(94)90023-X
  32. Kiang, J. G. and Tsokos, G. C. (1998) Heat shock protein 70 kDa: molecular biology, biochemistry and physiology. Pharmacol. Ther. 80, 183-201 https://doi.org/10.1016/S0163-7258(98)00028-X
  33. Mehlen, P., Kretz-Remy, C., Preville, X. and Arrigo, A. P. (1996) Human HSP27, Drosophila HSP27 and human B-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNF-induced cell death. EMBO J. 15, 2695-2706
  34. Brujin, L. I., Houseweart, M. K., Kato, S., Anderson, K. L., Anderson, S. D., Ohama, E., Reaume, A. G., Scott, R. W. and Cleveland, D. W. (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild type SOD1. Science 281, 1851-1854 https://doi.org/10.1126/science.281.5384.1851
  35. Wang, J., Xu, G., Gonzales, V., Coonfield, M., Fromholt, D., Copeland, N. G., Jenkins, N. A. and Borchelt, D. R. (2002) Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disrupted copper-binding site. Neurobiol. Dis. 10, 128-138 https://doi.org/10.1006/nbdi.2002.0498
  36. Kang, J. H. and Eum, W. S. (2000) Enhanced oxidative damage by the familial amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase. Biochim. Biophys. Acta 1524, 162-170 https://doi.org/10.1016/S0304-4165(00)00153-7
  37. Bradford, M. A. (1976) rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein-dye binding. Anal Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  38. MaCord, J. M. and Fridovich, I. (1969) Superoxide dismutase. J. Biol. Chem. 244, 6049-6055

Cited by

  1. Heat shock protein 27 and cyclophilin A associate with the pathogenesis of COPD vol.16, pp.6, 2011, https://doi.org/10.1111/j.1440-1843.2011.01993.x
  2. The family of mammalian small heat shock proteins (HSPBs): Implications in protein deposit diseases and motor neuropathies vol.44, pp.10, 2012, https://doi.org/10.1016/j.biocel.2012.03.011
  3. The 27-kDa heat shock protein (HSP27) is a reliable hippocampal marker of full development of pilocarpine-induced status epilepticus vol.98, pp.1, 2012, https://doi.org/10.1016/j.eplepsyres.2011.08.015
  4. Alteration of protein folding and degradation in motor neuron diseases: Implications and protective functions of small heat shock proteins vol.97, pp.2, 2012, https://doi.org/10.1016/j.pneurobio.2011.09.009
  5. Hippocampal heat shock protein 25 expression in streptozotocin-induced diabetic mice vol.227, 2012, https://doi.org/10.1016/j.neuroscience.2012.09.038
  6. Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders vol.368, pp.1617, 2013, https://doi.org/10.1098/rstb.2011.0409
  7. In vitro and in vivo anti-tumor effects of oriental herbal mixtures vol.19, pp.4, 2010, https://doi.org/10.1007/s10068-010-0143-6
  8. Contribution of small heat shock proteins to muscle development and function vol.588, pp.4, 2014, https://doi.org/10.1016/j.febslet.2014.01.005
  9. Antioxidant protection: A promising therapeutic intervention in neurodegenerative disease vol.45, pp.8, 2011, https://doi.org/10.3109/10715762.2011.574290