DOI QR코드

DOI QR Code

Temporal and Spatial Expression Patterns of Nine Arabidopsis Genes Encoding Jumonji C-Domain Proteins

  • Hong, Eun-Hye (School of Biological Sciences, Seoul National University) ;
  • Jeong, Young-Min (School of Biological Sciences, Seoul National University) ;
  • Ryu, Jee-Youn (School of Biological Sciences, Seoul National University) ;
  • Amasino, Richard M. (Global Research Laboratory for Floral Regulatory Signaling, Seoul National University) ;
  • Noh, Bosl (Global Research Laboratory for Floral Regulatory Signaling, Seoul National University) ;
  • Noh, Yoo-Sun (School of Biological Sciences, Seoul National University)
  • 투고 : 2009.02.02
  • 심사 : 2009.02.10
  • 발행 : 2009.04.30

초록

Diverse posttranslational modifications of histones, such as acetylation and methylation, play important roles in controlling gene expression. Histone methylation in particular is involved in a broad range of biological processes, including heterochromatin formation, X-chromosome inactivation, genomic imprinting, and transcriptional regulation. Recently, it has been demonstrated that proteins containing the Jumonji (Jmj) C domain can demethylate histones. In Arabidopsis, twenty-one genes encode JmjC domain-containing proteins, which can be clustered into five clades. To address the biological roles of the Arabidopsis genes encoding JmjC-domain proteins, we analyzed the temporal and spatial expression patterns of nine genes. RT-PCR analyses indicate all nine Arabidopsis thaliana Jmj (AtJmj) genes studied are actively expressed in various tissues. Furthermore, studies of transgenic plants harboring AtJmj::${\beta}$-glucuronidase fusion constructs reveal that these nine AtJmj genes are expressed in a developmentally and spatially regulated manner.

키워드

과제정보

연구 과제 주관 기관 : Korea Foundation for International Cooperation of Science and Technology, RDA, Korea Science and Engineering Foundation, Korea Research Foundation

참고문헌

  1. Agger, K., Cloos, P.A., Christensen, J., Pasini, D., Rose, S., Rappsilber, J., Issaeva, I., Canaani, E., Salcini, A.E., and Helin, K. (2007). UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449, 731-734 https://doi.org/10.1038/nature06145
  2. Byvoet, P. (1972). In vivo turnover and distribution of radio-N-methyl in arginine-rich histones from rat tissues. Arch. Biochem. Biophys. 152, 887-888 https://doi.org/10.1016/0003-9861(72)90286-X
  3. Chang, B., Chen, Y., and Bruick, R.K. (2007). JMJD6 is a histone arginine demethylase, Science 318, 444-447 https://doi.org/10.1126/science.1145801
  4. Chen, Z., Zang, J., Whetstine, J., Hong, X., Davrazou, F., Kutateladze, T.G., Simpson, M., Mao, Q., Pan, C.H., Dai, S., et al. (2006). Structural insights into histone demethylation by JMJD2 family members. Cell 125, 691-702 https://doi.org/10.1016/j.cell.2006.04.024
  5. Clissold, P.M., and Ponting, C.P. (2001). JmjC: cupin metalloenzymelike domains in jumonji, hairless and phospholipase A2beta. Trends Biochem. Sci. 26, 7-9 https://doi.org/10.1016/S0968-0004(00)01700-X
  6. Cloos, P.A.C., Christensen, J., Agger, K., Maiolica, A., Rappsilber, J., Antal, T., Hansen, K.H., and Helin, K. (2006). The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442, 307-311 https://doi.org/10.1038/nature04837
  7. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  8. Cuthbert, G.L., Daujat, S., Snowden, A.W., Erdjument-Bromage, H., Hagiwara, T., Yamada, M., Schneider, R., Gregory, P.D., Tempst, P., Bannister, A.J., et al. (2004). Histone deimination antagonizes arginine methylation. Cell 118, 545-553 https://doi.org/10.1016/j.cell.2004.08.020
  9. Duerre, J.A., and Lee, C.T. (1974). in vivo methylation and turnover of rat brain histones. J. Neurochem. 23, 541-547 https://doi.org/10.1111/j.1471-4159.1974.tb06057.x
  10. Finn, R.D., Mistry, J., Schuster-Bockler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A., Durbin, R., et al. (2006). Pfam: clans, web tools and services. Nucleic Acids Res. 34, D247-251 https://doi.org/10.1093/nar/gkj149
  11. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901-3907
  12. Klose, R.J., Kallin, E.M., and Zhang, Y. (2006). JmjC-domaincontaining proteins and histone demethylation. Nat. Rev. Genet. 7, 715-727 https://doi.org/10.1038/nrg1945
  13. Kosarev, P., Mayer, K.F., and Hardtke, C.S. (2002). Evaluation and classification of RING-finger domains encoded by the Arabidopsis genome. Genome Biol. 3, RESEARCH0016
  14. Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705 https://doi.org/10.1016/j.cell.2007.02.005
  15. Kwon, S.H., and Workman, J.L. (2008). The heterochromatin protein 1 (HP1) family: put away a bias toward HP1. Mol. Cells 26, 217-227
  16. Lu, F., Li, G., Cui, X., Liu, C., Wang, X.J., and Cao, X. (2008). Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice. J. Int. Plant Biol. 50, 886-896 https://doi.org/10.1111/j.1744-7909.2008.00692.x
  17. Malamy, J., and Benfey, P. (1997). Organization and cell differentiation. Development 124, 33-44
  18. Martin, C., and Zhang, Y. (2005). The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell. Biol. 6, 838-849 https://doi.org/10.1038/nrm1761
  19. Musco, G., and Peterson, P. (2008). PHD finger of autoimmune regulator: An epigenetic link between the histone modifications and tissue-specific antigen expression in thymus. Epigenetics 3, 310-314 https://doi.org/10.4161/epi.3.6.7182
  20. Noh, Y.S., and Amasino, R.M. (2003). mfbN, an fptf family gene, is required for ci` activation and floral repression in Arabidopsis. Plant Cell 15, 1671-1682 https://doi.org/10.1105/tpc.012161
  21. Noh, B., Lee, S.H., Kim, H.J., Yi, G., Shin, E.A., Lee, M., Jung, K.J., Doyle, M.R., Amasino, R.M., and Noh, Y.S. (2004). Divergent roles of a pair of homologous Jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell 16, 2601-2613 https://doi.org/10.1105/tpc.104.025353
  22. Pagnussat, G.C., Yu, H.J., Ngo, Q.A., Rajani, S., Mayalagu, S., Johnson, C.S., Capron, A., Xie, L.F., Ye, D., and Sundaresan, V. (2005). Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132, 603-614 https://doi.org/10.1242/dev.01595
  23. Saze, H., Shiraishi, A., Miura, A., and Kakutani, T. (2008). Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana Science 319, 462-465 https://doi.org/10.1126/science.1150987
  24. Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., Casero, R.A., and Shi, Y. (2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 https://doi.org/10.1016/j.cell.2004.12.012
  25. Thompson, J.D., Higgins, D.G.I and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  26. Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., and Zhang, Y. (2006). Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811-816 https://doi.org/10.1038/nature04433
  27. Whetstine, J.R., Nottke, A., Lan, F., Huarte, M., Smolikov, S., Chen, Z., Spooner, E., Li, E., Zhang, G., Colaiacovo, M., et al. (2006). Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467-481 https://doi.org/10.1016/j.cell.2006.03.028
  28. Xiang, Y., Zhu, Z., Han, G., Ye, X., Xu, B., Peng, Z., Ma, Y., Yu, Y. Lin, H., Chen, A.P., et al. (2007). JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc. Natl. Acad. Sci. USA 103, 19226-19231
  29. Yamane, K., Toumazou, C., Tsukada, Y., Erdjument-Bromage, H., Tempst, P., Wong, J., and Zhang, Y. (2006). JHDM2A, a JmjCcontaining H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125, 483-495 https://doi.org/10.1016/j.cell.2006.03.027
  30. Zhou, X., and Ma, H. (2008). Evolutionary history of histone demethylase families: distinct evolutionary patterns suggest functional divergence. BMC Evol. Biol. 8, 294 https://doi.org/10.1186/1471-2148-8-294

피인용 문헌

  1. Repression of FLOWERING LOCUS T Chromatin by Functionally Redundant Histone H3 Lysine 4 Demethylases in Arabidopsis vol.4, pp.11, 2009, https://doi.org/10.1371/journal.pone.0008033
  2. The Jumonji C Domain-Containing Protein JMJ30 Regulates Period Length in the Arabidopsis Circadian Clock vol.155, pp.2, 2011, https://doi.org/10.1104/pp.110.167015
  3. Chromatin remodeling and the circadian clock : Jumonji C-domain containing proteins vol.6, pp.6, 2009, https://doi.org/10.4161/psb.6.6.15171
  4. IBM1, a JmjC domain-containing histone demethylase, is involved in the regulation of RNA-directed DNA methylation through the epigenetic control of RDR2 and DCL3 expression in Arabidopsis vol.40, pp.18, 2009, https://doi.org/10.1093/nar/gks647
  5. A Companion Cell–Dominant and Developmentally Regulated H3K4 Demethylase Controls Flowering Time in Arabidopsis via the Repression of FLC Expression vol.8, pp.4, 2012, https://doi.org/10.1371/journal.pgen.1002664
  6. Wide-scale screening of T-DNA lines for transcription factor genes affecting male gametophyte development in Arabidopsis vol.25, pp.1, 2009, https://doi.org/10.1007/s00497-011-0178-8
  7. Genome-Wide Evaluation of Histone Methylation Changes Associated with Leaf Senescence in Arabidopsis vol.7, pp.3, 2009, https://doi.org/10.1371/journal.pone.0033151
  8. Control of Seed Germination by Light-Induced Histone Arginine Demethylation Activity vol.22, pp.4, 2009, https://doi.org/10.1016/j.devcel.2012.01.024
  9. Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis vol.5, pp.1, 2014, https://doi.org/10.1038/ncomms6098
  10. Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis vol.5, pp.None, 2009, https://doi.org/10.3389/fpls.2014.00290
  11. Dynamics of H3K27me3 methylation and demethylation in plant development vol.10, pp.9, 2015, https://doi.org/10.1080/15592324.2015.1027851
  12. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time vol.91, pp.6, 2017, https://doi.org/10.1111/tpj.13623
  13. JMJ30‐mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis vol.95, pp.6, 2009, https://doi.org/10.1111/tpj.14002
  14. The H3K27me3 demethylase REF6 promotes leaf senescence through directly activating major senescence regulatory and functional genes in Arabidopsis vol.15, pp.4, 2009, https://doi.org/10.1371/journal.pgen.1008068
  15. Conditional effects of the epigenetic regulator JUMONJI 14 in Arabidopsis root growth vol.146, pp.23, 2009, https://doi.org/10.1242/dev.183905
  16. Arabidopsis JMJ17 promotes cotyledon greening during de‐etiolation by repressing genes involved in tetrapyrrole biosynthesis in etiolated seedlings vol.231, pp.3, 2009, https://doi.org/10.1111/nph.17327