Sapflow Change and Growth Response of Poplar Species under Swine Wastewater Irrigation

양돈폐수처리시 포플러의 수액이동과 생장반응

  • Lee, Eu Ddeum (Department of Environmental Horticulture, University of Seoul) ;
  • Woo, Su Young (Department of Environmental Horticulture, University of Seoul) ;
  • Yeo, Jin Kie (Department of forest Resources Development, Korea Forest Research Institute) ;
  • Koo, Yeong Bon (Department of forest Resources Development, Korea Forest Research Institute) ;
  • Chun, Seung-Hoon (Bureau of Urban Planning & Landscape Architecture, Kyungwon University)
  • 이으뜸 (서울시립대학교 환경원예학과) ;
  • 우수영 (서울시립대학교 환경원예학과) ;
  • 여진기 (국립산림과학원 산림자원육성부) ;
  • 구영본 (국립산림과학원 산림자원육성부) ;
  • 전승훈 (경원대학교 도시계획조경학부)
  • Received : 2009.10.12
  • Accepted : 2009.11.12
  • Published : 2009.12.31

Abstract

We examined sapflow of two Populus species such as Populus alba ${\times}$ Populus glandulosa and Populus euramericana, grown under Swine wastewater treatment. Sapflow of Populus euramericana was 1.8 times higher than that of Populus alba ${\times}$ Populus glandulosa for 14 months. Sapflow of Populus euramericana and Populus alba${\times}$Populus glandulosa was 4,628L and 2,538L during this period, respectively. Positive relationship between sapflow density and solar radiation and temperature had been shown. Mean temperature, relative humidity and sapflow was strongly associated. There was a decreasing sapflow tendency of the two poplar species during the late October when the mean temperature was decreased. In addition, the data showed high relationship between sapflow and photosynthesis. Two poplar species showed dramatic decrease of sapflow since October.

본 연구는 식물을 이용한 양돈폐수 제거 가능성을 가늠하기 위하여 수행되었다. 두 종류의 포플러(Populus alba ${\times}$ Populus glandulosa과 Populus euramericana)를 양돈폐수 관수를 한 결과 실험기간 동안에(총 14개월) 이태리포플러(Populus euramericana)는 현사시(Populus alba ${\times}$ P. glandulosa) 보다 1.8배 많은 양의 수액이동을 하였다. 총 이동한 수액의 양은 각각 이태리포플러가 4,628L, 현사시가 2,538L였다. 수액이동 활동이 계절에 따라서 두 수종 모두 달라지는 결과를 얻었다. 기온과 일사량이 높을 때 수액의 이동 또한 활발해지고, 기온과 일사량이 낮을 때 수액이동 활동이 낮았다. 두 수종 모두 기온이 급격히 낮아지는 10월말 이후에 수액이동량이 급격히 감소하였다. 또한 수액이동량과 상대습도와의 관계를 보기 위한 회귀분석을 한 결과 특히 이태리포플러의 경우 유의한 상관관계를 보였다. 수액이동과 광합성능력은 높은 상관관계를 보였다. 이태리포플러는 광합성률의 증가와 급격한 수액이동을 한 것을 알 수 있었다. 이에 비해서 현사시는 광합성률과 수액이동의 증가율이 낮았다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. 여진기, 김인식, 구영본, 김태수, 손두식. 2002. 축산폐수 처리에 따른 포플러 수종 및 클론별 오염물질 흡수능력 및 내성. 한국폐기물학회지19(8): 912-920
  2. 여진기, 김인식, 구영본, 김영중, 주성현. 2003. 시험림에서 축산폐수 처리에 따른 포플러의 생장과 축산폐수흡수. 한국폐기물학회지 20(8): 742-749
  3. 제선미, 우수영, 구영본, 우관수, 여진기, 양수진. 2007. 돈분침출수 처리에 의한 이태리포플러와 현사시나무의 생리적 특성 및 항산화효소 활성. 한국임학회지 96(3): 369-375
  4. Cermak, J., Kucera, J. and Nadezhdina, N. 2004. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 18: 529-546 https://doi.org/10.1007/s00468-004-0339-6
  5. Cermark, J., Kueera, J., Bauerle, W.L., Phillips, N. and Hinckley, T.M. 2007. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiology 27: 181-198
  6. Fujino, J., Morita, A., Matsuoka, Y. and Sawayama, S. 2005. Vision for utilization of livestock residue as bioenergy resource in Japan. Biomass Bioenergy 29: 367-374 https://doi.org/10.1016/j.biombioe.2004.06.017
  7. Gilmour J.T., Mauromoustakos, A., Gale, P.M. and Norman, R.J. 1998. Kinetic of crop residue decomposition: variability among crops and years. Soil Science Society of America Journal 62: 750-755
  8. Granier, A. 1987. Evaluation of transpiration in a Douglas fir stand by means of sap flow measurements. Tree Physiology 3: 309-320
  9. Granier, A. and Laustau, D. 1994. Measuring and modeling the transpiration of a maritime pine canopy from sap flow data. Agricultural and Forest Meteorology 71: 61-81 https://doi.org/10.1016/0168-1923(94)90100-7
  10. Jordahl, J.L., Foster, L., Schnoor, J.L. and Alvarez, P.J.J. 1997. Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ. Toxicollogy and Chemistry 16: 318-321 https://doi.org/10.1002/etc.5620160630
  11. Jimenz, M.S., Cermak, J., Kucera, J. and Morales, D. 1996. Laurel forests in Tenerife, Canary Islands: the annual course of sap flow in Laurus trees and stand. Journal of Hydrology 183: 307-321 https://doi.org/10.1016/0022-1694(95)02952-4
  12. Kim, K.D., Lee, E.H., Lee, J.W., Cho, I.H., Mun, B., Lee, B.Y., Son, J.E. and Chun, C.H. 2008. Daily changes in rates of nutrient and water uptake, xylem sap exudate, and sapflow of hydroponically grown tomatoes. Horticulture Environment and Biotechnology 49: 209-215
  13. Luc, L. and Muller, E. 2002. Sap flow and water transfer in the Garonne River riparian woodland, France: first results on poplar and willow. Annals of Forest Science 59: 301-315 https://doi.org/10.1051/forest:2002026
  14. Li, F., Cohen, S., Naor, A., Shaozon, K. and Erez, A. 2002. Studies of canopy structure and water use of apple trees on three rootstock. Agricultural Water. Mgnagement 55: 1-14 https://doi.org/10.1016/S0378-3774(01)00184-6
  15. Lukaszewski, Z., Siwecki, R., Opydo, J. and Zembrzuski, W. 1993. The effect of industrial pollution on copper, lead, zinc and cadmium concentration in xylem rings of resistant (Populus marilandica) and sensitive (P. balsamifera) species of poplar. Trees 7: 169-174
  16. Meiresonne, L.N. Nadezhdin, J. Cermark, J. Van Silycken and Ceulemans, R. 1999. Measured sap flow and simulated transpiration from a poplar stand in Flanders (Belgium). Agricultural and Forest Meteorology 96: 165-179 https://doi.org/10.1016/S0168-1923(99)00066-0
  17. Olioso, A., Carlson T.N. and Brisson, N. 1996. Simulation of diurnal transpiration and photosynthesis of a water stressed soybean crop. Agricultural and Forest Meteorology 81: 41-59 https://doi.org/10.1016/0168-1923(95)02297-X
  18. Wang, H., Zhao, P., Wang, Q., Cai, X., Ma, L., Rao, X. and Zeng, X. 2008. Nocturnal sap flow characteristics and stem water recharge of Acacia mangium. Frontiers of Forestry in. China 3: 72-78 https://doi.org/10.1007/s11461-008-0005-z
  19. Wendt, C., Runkels J. and Haas, R. 1967. The measurement of water loss by mesquite (Prpsopis glandulosa var. glandulosa Torr) using the thermoelectric method. Soil Science Society of America 31: 161-164 https://doi.org/10.2136/sssaj1967.03615995003100020007x
  20. Wullschleger, S.D., Meinzer, F.C. and Vertessy, R.A. 1998. A review of whole-plant water use studies in trees. Tree Physiology 18, 499-512
  21. Wullschleger, S.D., Hanson, P.J. and Todd, D.E. 2001. Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. Forest Ecolology and Meteology 143: 205- 213 https://doi.org/10.1016/S0378-1127(00)00518-1
  22. Zalesny, Jr R., Wiese, A.H., Bauer, E.O. and Riemenschneider, D.E. 2006. Sapflow of hybrid poplar (Populus nigra L.P. maximowiczii A. Henry 'NM6') during phytoremediation of landfill leachate. Biomass Bioenergy 30: 784-93 https://doi.org/10.1016/j.biombioe.2005.08.006
  23. Zalesny, J.A., Zalesny Jr. R.S., Coyle, D.R. and Hall, R.B. 2007. Growth and biomass of Populus irrigated with landfill leachate. Forest Ecology and Management 248: 143-152 https://doi.org/10.1016/j.foreco.2007.04.045