DOI QR코드

DOI QR Code

IscR Modulates Catalase A (KatA) Activity, Peroxide Resistance, and Full Virulence of Pseudomonas aeruginosa PA14

  • Kim, Seol-Hee (Department of Life Science, Sogang University) ;
  • Lee, Bo-Young (Department of Life Science, Sogang University) ;
  • Lau, Gee W. (Department of Pathobiology, University of Illinois at Urbana-Champaign) ;
  • Cho, You-Hee (Department of Life Science, Sogang University)
  • Published : 2009.12.31

Abstract

We have identified the iscR (PA3815) gene encoding an iron-sulfur cluster assembly regulator homolog as one of the genes required for peroxide resistance in Pseudomonas aeruginosa PA14. Here, we present the phenotypic characterization of an iscR deletion mutant in terms of KatA expression, stress responses, and virulence. The iscR null mutant exhibited reduced KatA activity at the posttranslational level, hypersensitivity to hydrogen peroxide, and virulence-attenuation in Drosophila melanogaster and mouse peritonitis models. These phenotypes were fully restored by multicopy-based expression of katA. These results suggest that the requirement of IscR in P. aeruginosa is related to the proper activity of KatA, which is crucial for peroxide resistance and full virulence of this bacterium.

Keywords

References

  1. Agar, J. N., C. Krebs, J. Frazzon, B. H. Huynh, D. R. Dean, and M. K. Johnson. 2000. IscU as a scaffold for iron-sulfur cluster biosynthesis: Sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry 39: 7856-7862 https://doi.org/10.1021/bi000931n
  2. Becher, A. and H. P. Schweizer. 2000. Integration-proficient Pseudomonas aeruginosa vectors for isolation of single-copy chromosomal lacZ and lux gene fusions. Biotechniques 29: 948-950
  3. Choi, Y.-S., D.-H. Shin, I.-Y. Chung, S.-H. Kim, Y.-J. Heo, and Y.-H. Cho. 2007. Identification of Pseudomonas aeruginosa genes crucial for hydrogen peroxide resistance. J. Microbiol. Biotechnol. 17: 1344-1352
  4. D'Argenio, D. A., L. A. Gallagher, C. A. Berg, and C. Manoil. 2001. Drosophila as a model host for Pseudomonas aeruginosa infection. J. Bacteriol. 183: 1466-1471 https://doi.org/10.1128/JB.183.4.1466-1471.2001
  5. Dean, R. T., S. Fu, R. Stocker, and M. J. Davies. 1997. Biochemistry and pathology of radical-mediated protein oxidation. Biochem. J. 324: 1-18
  6. Deisseroth, A. and A. L. Dounce. 1970. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiol. Rev. 50: 319-375
  7. Ding, H. and R. J. Clark. 2004. Characterization of iron binding in IscA, an ancient iron-sulphur cluster assembly protein. Biochem. J. 379: 433-440 https://doi.org/10.1042/BJ20031702
  8. Flint, D. H., J. F. Tuminello, and T. J. Miller. 1996. Studies on the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase in Escherichia coli crude extract. Isolation of O-acetylserine sulfhydrylases A and B and beta-cystathionase based on their ability to mobilize sulfur from cysteine and to participate in Fe-S cluster synthesis. J. Biol. Chem. 271: 16053-16067 https://doi.org/10.1074/jbc.271.27.16053
  9. Giel, J. L., D. Rodionov, M. Liu, F. R. Blattner, and P. J. Kiley. 2006. IscR-dependent gene expression links iron-sulphur cluster assembly to the control of $O_2$-regulated genes in Escherichia coli. Mol. Microbiol. 60: 1058-1075 https://doi.org/10.1111/j.1365-2958.2006.05160.x
  10. Halliwell, B. and J. M. Gutteridge. 1990. Role of free radicals and catalytic metal ions in human disease: An overview. Meth. Enzymol. 186: 1-88 https://doi.org/10.1016/0076-6879(90)86093-B
  11. Hassett, D. J., E. Alsabbagh, K. Parvatiyar, M. L. Howell, R. W. Wilmott, and U. A. Ochsner. 2000. A protease-resistant catalase, KatA, released upon cell lysis during stationary phase is essential for aerobic survival of a Pseudomonas aeruginosa oxyR mutant at low cell densities. J. Bacteriol. 182: 4557-4563 https://doi.org/10.1128/JB.182.16.4557-4563.2000
  12. Heo, Y. J., I.-Y. Chung, K. B. Choi, G. W. Lau, and Y.-H. Cho. 2007. Genome sequence comparison and superinfection between two related Pseudomonas aeruginosa phages, D3112 and MP22. Microbiology 153: 2885-2895 https://doi.org/10.1099/mic.0.2007/007260-0
  13. Heo, Y. J., I.-Y. Chung, K. B. Choi, and Y.-H. Cho. 2007. R-Type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains. J. Microbiol. Biotechnol. 17: 180-185
  14. Hoff, K. G., J. J. Silberg, and L. E. Vickery. 2000. Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 97: 7790-7795 https://doi.org/10.1073/pnas.130201997
  15. Huet, G., M. Daffe, and I. Saves. 2005. Identification of the Mycobacterium tuberculosis SUF machinery as the exclusive mycobacterial system of [Fe-S] cluster assembly: Evidence for its implication in the pathogen's survival. J. Bacteriol. 187: 6137-6146 https://doi.org/10.1128/JB.187.17.6137-6146.2005
  16. Imlay, J. A. 2006. Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 59: 1073-1082 https://doi.org/10.1111/j.1365-2958.2006.05028.x
  17. Imlay, J. A., S. M. Chin, and S. Linn. 1998. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240: 640-642 https://doi.org/10.1126/science.2834821
  18. Kiley, P. J. and H. Beinert. 2003. Role of Fe-S clusters in sensing and regulating bacterial growth. Curr. Opin. Microbiol. 6: 181-185 https://doi.org/10.1016/S1369-5274(03)00039-0
  19. Krebs, C. J., N. Agar, A. D. Smith, J. Frazzon, D. R. Dean, B. H. Huynh, and M. K. Johnson. 2001. IscA, an alternate scaffold for Fe-S cluster biosynthesis. Biochemistry 40: 14069-14080 https://doi.org/10.1021/bi015656z
  20. Lee, J.-S., Y.-J. Heo, J.-K. Lee, and Y.-H. Cho. 2005. KatA, the major catalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect. Immun. 73: 4399-4403 https://doi.org/10.1128/IAI.73.7.4399-4403.2005
  21. Ma, J. F., U. A. Ochsner, M. G. Klotz, V. K. Nanayakkara, M. L. Howell, Z. Johnson, et al. 1999. Bacterioferritin A modulates catalase A (KatA) activity and resistance to hydrogen peroxide in Pseudomonas aeruginosa. J. Bacteriol. 181: 3730-3742
  22. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  23. Nachin, L., M. El Hassouni, L. Loiseau, D. Expert, and F. Barras. 2001. SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: The key role of SufC, an orphan ABC ATPase. Mol. Microbiol. 39: 960-972 https://doi.org/10.1046/j.1365-2958.2001.02288.x
  24. Patzer, S. I. and K. Hantke. 1999. SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe-2S] FhuF protein in Escherichia coli. J. Bacteriol. 181: 3307-3309
  25. Rahme, L. G., E. J. Stevens, S. F. Wolfort, J. Shao, R. G. Tompkins, and F. M. Ausubel. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 1899-1902 https://doi.org/10.1126/science.7604262
  26. Ratledge, C. and L. G. Dover. 2000. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54: 881-941 https://doi.org/10.1146/annurev.micro.54.1.881
  27. Schwartz, C. J., J. L. Giel, T. Patschkowski, C. Luther, F. J. Ruzicka, H. Beinert, and P. J. Killey. 2001. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc. Natl. Acad. Sci. U.S.A. 98: 14895-14900 https://doi.org/10.1073/pnas.251550898
  28. Schweizer, H. P. 1991. Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene 97: 109-121 https://doi.org/10.1016/0378-1119(91)90016-5
  29. Scott, M. D. and J. W. Eaton. 1996. Superoxide is not the proximate cause of paraquat toxicity. Redox Report 2: 113-119
  30. Shin, D.-H., Y.-S. Choi, and Y.-H. Cho. 2008. Unusual properties of catalase A (KatA) of Pseudomonas aeruginosa PA14 are associated with its biofilm peroxide resistance. J. Bacteriol. 190: 2663-2670 https://doi.org/10.1128/JB.01580-07
  31. Sies, H. 1991. Oxidative Stress. Academic Press Ltd., Orlando, FL
  32. Smith, A. D., J. N. Agar, K. A. Johnson, J. Frazzon, I. J. Amster, D. R. Dean, and M. K. Johnson. 2001. Sulfur transfer from IscS to IscU: The first step in iron-sulfur cluster biosynthesis. J. Am. Chem. Soc. 123: 11103-11104 https://doi.org/10.1021/ja016757n
  33. Sonnleitner, E., S. Hagens, F. Rosenau, S. Wilhelm, A. Habel, K. E. Jager, and U. Blasi. 2003. Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb. Pathog. 35: 217-228 https://doi.org/10.1016/S0882-4010(03)00149-9
  34. Tokumoto, U., S. Kitamura, K. Fukuyama, and Y. Takahashi. 2004. Interchangeability and distinct properties of bacterial Fe-S cluster assembly systems: Functional replacement of the isc and suf operons in Escherichia coli with the nifSU-like operon from Helicobacter pylori. J. Biochem. 136: 199-209 https://doi.org/10.1093/jb/mvh104
  35. Urbina, H. D., J. J. Silberg, K. G. Hoff, and L. E. Vickery. 2001. Transfer of sulfur from IscS to IscU during Fe/S cluster assembly. J. Biol. Chem. 276: 44521-44526 https://doi.org/10.1074/jbc.M106907200
  36. Yeo, W.-S., J.-H. Lee, K.-C. Lee, and J.-H. Roe. 2006. IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol. Microbiol. 61: 206-218 https://doi.org/10.1111/j.1365-2958.2006.05220.x

Cited by

  1. Iron-containing transcription factors and their roles as sensors vol.15, pp.2, 2009, https://doi.org/10.1016/j.cbpa.2011.01.006
  2. Bacterial Iron-Sulfur Regulatory Proteins As Biological Sensor-Switches vol.17, pp.9, 2009, https://doi.org/10.1089/ars.2012.4511
  3. The Drosophila melanogaster host model vol.4, pp.1, 2012, https://doi.org/10.3402/jom.v4i0.10368
  4. Biogenesis of [Fe-S] cluster in Firmicutes: an unexploited field of investigation vol.104, pp.3, 2013, https://doi.org/10.1007/s10482-013-9966-5
  5. Genome-wide fitness profiling reveals adaptations required by Haemophilus in coinfection with influenza A virus in the murine lung vol.110, pp.38, 2009, https://doi.org/10.1073/pnas.1311217110
  6. Low cell density regulator AphA upregulates the expression of Vibrio vulnificus iscR gene encoding the Fe-S cluster regulator IscR vol.52, pp.5, 2009, https://doi.org/10.1007/s12275-014-3592-4
  7. IscR Is a Global Regulator Essential for Pathogenesis of Vibrio vulnificus and Induced by Host Cells vol.82, pp.2, 2014, https://doi.org/10.1128/iai.01141-13
  8. IscR Is Essential for Yersinia pseudotuberculosis Type III Secretion and Virulence vol.10, pp.6, 2009, https://doi.org/10.1371/journal.ppat.1004194
  9. The Iron-Sulphur Cluster Biosynthesis Regulator IscR Contributes to Iron Homeostasis and Resistance to Oxidants in Pseudomonas aeruginosa vol.9, pp.1, 2009, https://doi.org/10.1371/journal.pone.0086763
  10. Catalase (KatA) Plays a Role in Protection against Anaerobic Nitric Oxide in Pseudomonas aeruginosa vol.9, pp.3, 2014, https://doi.org/10.1371/journal.pone.0091813
  11. Bacterial iron-sulfur cluster sensors in mammalian pathogens vol.7, pp.6, 2015, https://doi.org/10.1039/c5mt00012b
  12. IscR Regulates Synthesis of Colonization Factor Antigen I Fimbriae in Response to Iron Starvation in Enterotoxigenic Escherichia coli vol.197, pp.18, 2009, https://doi.org/10.1128/jb.00214-15
  13. The FinR-regulated essential gene fprA , encoding ferredoxin NADP + reductase: Roles in superoxide-mediated stress protection and virulence of Pseudomonas aeruginosa vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0172071
  14. The iron–sulfur cluster sensor IscR is a negative regulator of Spi1 type III secretion system in Salmonella enterica vol.19, pp.4, 2017, https://doi.org/10.1111/cmi.12680
  15. Iron-sulfur cluster biosynthesis and trafficking - impact on human disease conditions vol.10, pp.1, 2009, https://doi.org/10.1039/c7mt00180k
  16. Pseudomonas aeruginosa ttcA encoding tRNA-thiolating protein requires an iron-sulfur cluster to participate in hydrogen peroxide-mediated stress protection and pathogenicity vol.8, pp.None, 2009, https://doi.org/10.1038/s41598-018-30368-y
  17. Antibacterial strategies inspired by the oxidative stress and response networks vol.57, pp.3, 2009, https://doi.org/10.1007/s12275-019-8711-9
  18. Propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assay for rapid detection of viable and viable but non-culturable (VBNC) Pseudomonas aeruginosa in swimming pools vol.17, pp.1, 2009, https://doi.org/10.1007/s40201-019-00359-w
  19. Oligoribonuclease Contributes to Tolerance to Aminoglycoside and β-Lactam Antibiotics by Regulating KatA in Pseudomonas aeruginosa vol.63, pp.6, 2009, https://doi.org/10.1128/aac.00212-19
  20. Differential expression of the major catalase, KatA in the two wild type Pseudomonas aeruginosa strains, PAO1 and PA14 vol.57, pp.8, 2009, https://doi.org/10.1007/s12275-019-9225-1
  21. Transposon mutagenesis and identification of mutated genes in growth-delayed Edwardsiella ictaluri vol.19, pp.None, 2019, https://doi.org/10.1186/s12866-019-1429-3
  22. The transcriptional regulator IscR integrates host-derived nitrosative stress and iron starvation in activation of the vvhBA operon in Vibrio vulnificus vol.295, pp.16, 2009, https://doi.org/10.1074/jbc.ra120.012724
  23. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors vol.22, pp.6, 2009, https://doi.org/10.3390/ijms22063128
  24. Genome Scale Analysis Reveals IscR Directly and Indirectly Regulates Virulence Factor Genes in Pathogenic Yersinia vol.12, pp.3, 2009, https://doi.org/10.1128/mbio.00633-21
  25. Oxidative Stress Response in Pseudomonas aeruginosa vol.10, pp.9, 2021, https://doi.org/10.3390/pathogens10091187
  26. Potential genes associated with survival of Acinetobacter baumannii under ciprofloxacin stress vol.23, pp.9, 2009, https://doi.org/10.1016/j.micinf.2021.104844
  27. Bacterial Approaches for Assembling Iron-Sulfur Proteins vol.12, pp.6, 2009, https://doi.org/10.1128/mbio.02425-21