Rhapontigenin Production by Bioconversion and Inhibition of Melanin Synthesis

생물전환에 의한 Rhapontigenin의 생산 및 멜라닌 합성저해

  • Jeon, Min (Department of Chemical Engineering & Biotechnology, Korea Polytechnic University) ;
  • Lee, Kang-Moon (Department of Chemical Engineering & Biotechnology, Korea Polytechnic University) ;
  • Lim, Young-Hee (Department of Clinical Laboratory, Science College of Health Science, Korea University) ;
  • Kim, Jeong-Keun (Department of Chemical Engineering & Biotechnology, Korea Polytechnic University)
  • 전민 (한국산업기술대학교 생명화학공학과) ;
  • 이강문 (한국산업기술대학교 생명화학공학과) ;
  • 임영희 (고려대학교 보건과학대학 임상병리학과) ;
  • 김정근 (한국산업기술대학교 생명화학공학과)
  • Published : 2009.03.28

Abstract

Rhapontin is the glycosylated stilbene compound, and comprising major component of rhubarb root extract. Rhapontin has been used as a raw material of skin-whitening cosmetics in Korea. Rhapontigenin, the aglycone of rhapontin, has been suggested to be more active than its glycosylated form. Therefore, the rhubarb root extract was treated with commercial enzyme, Pectinex to remove glycosylated moiety of rhapontin and rhapontigenin was prepared. The resulting material was analysed and identified as rhapontigenin by proton NMR and MALDI-Mass. Rhapontigenin exhibited tyrosinase inhibitory activity with an $IC_{50}$ of $126.72{\mu}g/mL$. The tyrosinase inhibitory activity of rhapontigenin was six times higher than that of rhapontin. In melanin biosynthesis inhibition assay using Streptomyces bikiniensis, rhapontigenin showed wider inhibition zone than that of rhapontin. From these results, we expect that rhapontigenin has stronger skin whitening effect than rhapontin and has advantages in cosmetic industry.

대황으로부터 추출한 rhapontin을 산업용 효소로 가수분해하여 rhapontigenin을 제조하고 kojic acid, hydroquinone 및 ascorbic acid를 비교물질로 한 tyrosinase 활성저해 실험과 S. bikiniensis를 이용한 멜라닌 생성 억제효과 실험을 통해 미백효과에 대한 가능성을 확인하였다. Rhapontin과 rhapontigenin의 결과를 비교해 보면 rhapontigenin의 경우 tyrosinase활성저해 및 멜라닌 생성 억제능이 증가하는 것으로 나타났다. 따라서 rhapontin을 효소 가수분해하여 생성된 rhapontigenin은 미백능이 월등히 증가된 천연 미백화장품소재로 개발될 수 있을 것으로 기대된다.

Keywords

References

  1. Battaini, G, E. Monzani, L. Casella, L. Santagostini, and R. Pagliarin. 2000. Inhibition of the catecholase activity of biomimetic dinuclear copper complexes by kojic acid. J. Biol. Inorg. Chem. 5: 262-268 https://doi.org/10.1007/s007750050370
  2. Bell, A. A. and M. H. Weeler. 1986. Biosynthesis and function of fungal melanin. Ann. Rev. Phyrophathol. 24: 411-451 https://doi.org/10.1146/annurev.py.24.090186.002211
  3. Canabas, J., S. Chazarra, and F. Garcia-Carmona. 1994. Kojic acid, a cosmetic skin whitening agent, is a slowbinding inhibitor of catecholase activity of tyrosinase. J. Pharm.Pharmacol. 46: 982-985
  4. Choi, B. W:, B. H. Lee, K. J. Kang, E. S. Lee, and N. H. Lee. 1998. Screening of the tyrosinase inhibitors from marine algae and medicinal plants. Kor. J. Pharm. 29: 237-242
  5. Doo1ey, T. P., R. C. Gadwood, K. Ki1gore, and L. M. Thomasco. 1994. Development of an in vitro primary screen for skin depigmentation and antimelanoma agent. Skin Pharmacol. 7: 188-200 https://doi.org/10.1159/000211294
  6. Hiil, H. Z., W. Li, P. Xin, and D. L. Mitchell. 1997. Melanin: A two edged sword? Pigment Cell Res. 10: 158-161 https://doi.org/10.1111/j.1600-0749.1997.tb00478.x
  7. Hori, I., K. Nihei, and I. Kubo. 2004. Structural criteria for depigmenting mechanism of arbutin. Phytother. Res. 18: 475-479 https://doi.org/10.1002/ptr.1456
  8. Ikeda, T. and T. Tsutsumi. 1990. Function and skin depigmental activity of crude drugs. Fragrance J. 18: 59-66
  9. Kim, Y M., J. Yun, C. K. Lee, H. H. Lee, K. R. Min, and Y. S. Kim. 2002. Oxyresveratrol and hydroxystilbene compounds: Inhibitory effect on tyrosirlase and mechanism of action. J. Biol. Chem. 277: 16340-16344 https://doi.org/10.1074/jbc.M200678200
  10. Kubo, M. and H. Matsuda. 1995. Development studies of cuticle and medicainal drugs from natural sources on melanin biosynthesis. Fragrance J. 8: 48-55
  11. Lemer, A. B. and T. B. Fitzpatrick. 1950. Biochemistry of melanin formation. Physiol. Rev. 30: 91-126
  12. Marotti, I.; A. Bonetti, B. Biavati, P. Catizone, and G Dirlelli. 2007. Biotransformation of common bean (Phaseolus vulgaris L.) flavonoid glycosides by bifidobacterium species from human intestinal origin. J. Agric. Food Chem. 55: 3913-3919 https://doi.org/10.1021/jf062997g
  13. Matsukarni, M. 1995. Evaluation of antimelanogenic effects. Fragrance J. 19: 14-19
  14. Matubara, H. 1998. Inhibitory effect of lichen metabolites and their synthetic analogues on me1anin biosynthesis in cultured B-16 mouse mealnoma cells. Natural Product Sciences 4: 161-169
  15. Mishima, Y, S. Hatta, and Y. Ohyama. 1988. Induction of melanogenesis suppression: cellular pharmacology and mode of differential action. Pigment Cell Res. 1: 367-374 https://doi.org/10.1111/j.1600-0749.1988.tb00136.x
  16. Nielsen, I. L., W. S. Chee, L. Poulsen, E. Offord-Cavin, S. E. Rasmussen, H. Frederiksen, M. Enslen, D. Barron, M. N. Horcajada, and G. Williamson. 2006. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: a randomized, double-blind, crossover trial. J. Nutr. 136: 404-408
  17. Otieno, D. O. and N. P. Shah. 2007. A comparison of changes in the transformation of isoflavones in soymilk using varying concentrations of exogenous and probioticderived ndogenous$\beta$ -glucosidases. J. Appl. Microbiol. 103: : 60이1-612
  18. Peter, E. and I. H. Maibach. 2000. Cosmeceuticals: Drugs vs. Cosmetics. pp. 123-145. Marcel Dekker, New York
  19. Tomita, K., N. Oda, M. Ohbayashi, H. Kamei, T. Miyaki, and T. Oki. 1990. A new screening method for melanin biosynthesis inhibitiors using Streptomyces bikiniensis. J. Antibiot. 43: 1601-1605 https://doi.org/10.7164/antibiotics.43.1601