DOI QR코드

DOI QR Code

Cloning of Rod Opsin Genes Isolated from Olive Flounder Paralichthys olivaceus, Japanese Eel Anguilla japonica, and Common Carp Cyprinus carpio

  • Kim, Sung-Wan (Department of Fishery Biology, Pukyong National University) ;
  • Kim, Jong-Myoung (Department of Fishery Biology, Pukyong National University)
  • Published : 2009.12.31

Abstract

G Protein-coupled receptors (GPCRs) mediating wide ranges of physiological responses is one of the most attractive targets for drug development. Rhodopsin, a dim-light photoreceptor, has been extensively used as a model system for structural and functional study of GPCRs. Fish have rhodopsin finely-tuned to their habitats where the intensity and the wavelength of lights are changed depending on its water-depth. To study the detailed molecular characteristics of GPCR architecture and to understand the fishery light-sensing system, genes encoding rod opsins were isolated from fishes living under different photic environments. Full-length rod opsin genes were obtained by combination of PCR amplification and DNA walking strategy of genomic DNA isolated from olive flounder, P. olivaceus, Japanese eel, A. japonica, and Common carp C. carpio. Deduced amino acid sequences showed a typical feature of rod opsins including the sites for Schiffs base formation (Lys296) and its counter ion (Glu113), disulfide formation (Cys110 and Cys187), and palmitoylation (Cys322 and Cys323) although Cys322 is replaced by Phe in Japanese eel. Comparison of opsins by amino acid sequence alignment indicated the closest similarity between P. olivaceus and H. hippoglossus (94%), A. japonica and A. anguilla (98%), and C. carpio and C. auratus (95%), respectively.

Keywords

References

  1. Archer S, Hopε AJ and Partridge JC. 1995. The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proc. Roy. Soc. Lond. B262, 289-95 https://doi.org/10.1098/rspb.1995.0208
  2. Bowmaker JK and Hunt DM. 1999. Molecular bio1ogy of photoreceptor spectral sensitivity. In adaptive mechanisms in thε ecology of vision, Ed. Archer SN, Djamgoz MBA, Loew ER, Partridge JC and Vallerga S. pp. 439-62. Dordrecht: Kluwer Academic Publisher
  3. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK and Stevens RC. 2007. Highresolution crysta1 structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science, 318, 1258-66 https://doi.org/10.1126/science.1150577
  4. Davies WL, Cowing JA, Carvalho LS, Potter IC, Trezise AEO, Hunt DM and Collin SP. 2007. Functiona1 characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey. FASEB J., 21, 2713-24 https://doi.org/10.1096/fj.06-8057com
  5. Fitzgibbon J, Hope A, Slobodyanyuk SJ, Bellingham J, Bowmaker JK and Hunt DM. 1995. The rhodopsinencoding gene of bony fish lacks introns. Gene, 164, 273-7 https://doi.org/10.1016/0378-1119(95)00458-I
  6. Franke RR, K$\ddot{o}$nig B, Sakmar TP, Khorana HG and Hofmann KP. 1990. Rhodopsin mutants that bind but fail to activate transducin. Science, 250, 123-125 https://doi.org/10.1126/science.2218504
  7. Helvik JV, Drivenes $Ø \O$, Naess TH, Fjose A and Seo HC. 2001. Molecular $\acute{c}$loning and characterization of five opsin genes from the marine flatfish Atlantic halibut (Hippoglossus hippoglossus). Vis. Neurosci., 18, 767-80
  8. Hope AJ, Partridge JC and Hayes PK. 1998. Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.). Proc. Roy. Soc. Lond., B265, 869-74 https://doi.org/10.1098/rspb.1998.0372
  9. Hunt, DM, DuLai KS, Partridge JC, Cottrill P and Bowmaker JK. 2001. The molecular basis for spectra1 tuning of rod visual pigments in deep-sea fish. J. Exp. Biol., 204, 3333-44
  10. Imai H, Kojima D, Oura T, Tachibanaki S, Terakita A and Shichida Y. 1997. Single amino acid residue as a functional determinant of rod and cone visual pigments. Proc. Natl. Acad. Sci. USA, 94, 2322 https://doi.org/10.1073/pnas.94.6.2322
  11. Inoue H, Nojima H, and Okayama H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene, 96, 23-8 https://doi.org/10.1016/0378-1119(90)90336-P
  12. Kamik SS, Sakmar TP, Chen HB and Khorana HG. 1988. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc. Natl. Acad. Sci. USA, 85, 8459-63 https://doi.org/10.1073/pnas.85.22.8459
  13. Kaushal S, Ridge K and Khorana HG. 1994. Structure and function in rhodopsin : The role of asparagine linked glycosylation. Proc. Natl. Acad. Sci. USA, 91 , 4024-8 https://doi.org/10.1073/pnas.91.9.4024
  14. Khorana, H.G. 2000. Molecular biology of light transduction by the mammalian photorecEptor, rhodopsin. J. Biomol. Struct. Dyn., 11, 1-6
  15. Kim, JM, Kim SW and Kim SK. 2007. Molecular cloning and characterization of the rod opsin gene in olive flounder Paralichthys olivaceus. J. Fish. Sci. TEch. l0, 8-15
  16. Lythgoe JN. 1979. The Ecology of Vision. Oxford, Clarendon Press
  17. Menon ST, Han M and Sakmar TP. 2001. Rhodopsin structural basis of molecular physiology. Physiol. Rev., 81, 1659-88
  18. Nakayama TA and Khorana HG. 1991. Mapping of the amino acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. J. Biol. Chem., 266, 4269-75
  19. Ohguro H, Johnson RS, Ericsson LH, Walsh KA and Palczewski K. 1994. Control of rhodopsin multiple phosphorylation. Biochemistry, 33, 1023-8 https://doi.org/10.1021/bi00170a022
  20. Oprian DD, Molday RS, Kaufman RJ and Khorana HG. 1987. Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc. Natl. Acad. Sci. USA, 84, 8874-8 https://doi.org/10.1073/pnas.84.24.8874
  21. Ovchinnikov Y A, Abdulaev NG and Bogachuk AS. 1988. Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett., 230, 1-5 https://doi.org/10.1016/0014-5793(88)80628-8
  22. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M and Miyano M. 2000. Crystal structure of rhodopsin: A G proteincoupled receptor. Science, 289, 739-45 https://doi.org/10.1126/science.289.5480.739
  23. Philp AR, Bellingham J, Garcia-Femandez JM and Forster RG. 2000. A novel rod like opsin isolated from the extra-retinal photoreceptors ofteleost fìsh. FEBS Lett. 468, 181-8 https://doi.org/10.1016/S0014-5793(00)01217-5
  24. Rosenbaum DM, Rasmussen SG and Kobilka BK. 2009. The structure and function of G-protein-coupled receptors. Nature, 459, 356-63. https://doi.org/10.1038/nature08144
  25. Sakmar TP, Franke RR and Khorana HG. 1989. Glutamic acid-l13 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc. Natl. Acad. Sci. USA, 86, 8309-13 https://doi.org/10.1073/pnas.86.21.8309
  26. Sambrook J and Russell DW. 2001. Molecular cloning: A laboratory manual. Third edition. Cold Spring Harbor Laboratory Press, NY, Plainview
  27. Thompson JD, Higgins DG and Gibson TJ. 1994. CLUST AL W: improving the sensitivity of progresssive multiple sequence alignment through sequence weight matrix choice. Nucleic. Acids. Res., 22, 4673-80 https://doi.org/10.1093/nar/22.22.4673
  28. Yokoyama S. 1995. Amino acid replacements and wavelength absorption of visual pigments in vertebrates. Mol. Biol. Evol., 12, 53-61 https://doi.org/10.1093/oxfordjournals.molbev.a040190
  29. Y okoyama S and Radlwimmer FB. 1998. The "Five Sites" rule and the evolution of rod and green color vision in mammals. Mol. Biol. Evol., 15, 560-7 https://doi.org/10.1093/oxfordjournals.molbev.a025956
  30. Wang JK, McDowell JH and Hargrave PA. 1980. Site of attachment of 11-cis retinal in bovine rhodopsin. Biochemistry, 19, 5111-7 https://doi.org/10.1021/bi00563a027
  31. Zhang H, Futami K, Horie N, Okamura A, Utoh T, Mikawa N, Yamada Y, Tanaka S and Okamoto N. 2000. Molecular cloning of fresh water and deep-sea rod opsin genes from Japanese expressional analyses during sexual maturation. FEBS Lett. 469, 39-43 https://doi.org/10.1016/S0014-5793(00)01233-3