DOI QR코드

DOI QR Code

ON THE STABILITY OF A FIXED POINT ALGEBRA C*(E)γ OF A GAUGE ACTION ON A GRAPH C*-ALGEBRA

  • Jeong, Ja-A. (DEPARTMENT OF MATHEMATICAL SCIENCES AND RESEARCH INSTITUTE OF MATHEMATICS SEOUL NATIONAL UNIVERSITY)
  • Published : 2009.05.01

Abstract

The fixed point algebra $C^*(E)^{\gamma}$ of a gauge action $\gamma$ on a graph $C^*$-algebra $C^*(E)$ and its AF subalgebras $C^*(E)^{\gamma}_{\upsilon}$ associated to each vertex v do play an important role for the study of dynamical properties of $C^*(E)$. In this paper, we consider the stability of $C^*(E)^{\gamma}$ (an AF algebra is either stable or equipped with a (nonzero bounded) trace). It is known that $C^*(E)^{\gamma}$ is stably isomorphic to a graph $C^*$-algebra $C^*(E_{\mathbb{Z}}\;{\times}\;E)$ which we observe being stable. We first give an explicit isomorphism from $C^*(E)^{\gamma}$ to a full hereditary $C^*$-subalgebra of $C^*(E_{\mathbb{N}}\;{\times}\;E)({\subset}\;C^*(E_{\mathbb{Z}}\;{\times}\;E))$ and then show that $C^*(E_{\mathbb{N}}\;{\times}\;E)$ is stable whenever $C^*(E)^{\gamma}$ is so. Thus $C^*(E)^{\gamma}$ cannot be stable if $C^*(E_{\mathbb{N}}\;{\times}\;E)$ admits a trace. It is shown that this is the case if the vertex matrix of E has an eigenvector with an eigenvalue $\lambda$ > 1. The AF algebras $C^*(E)^{\gamma}_{\upsilon}$ are shown to be nonstable whenever E is irreducible. Several examples are discussed.

Keywords

References

  1. T. Bates, J. H. Hong, I. Raeburn, and W. Szymanski, The ideal structure of the $C^*$-algebras of infinite graphs, Illinois J. Math. 46 (2002), no. 4, 1159–1176
  2. T. Bates and D. Pask, Flow equivalence of graph algebras, Ergodic Theory Dynam. Systems 24 (2004), no. 2, 367–382 https://doi.org/10.1017/S0143385703000348
  3. T. Bates, D. Pask, I. Raeburn, and W. Szymanski, The $C^*$-algebras of row-finite graphs, New York J. Math. 6 (2000), 307–324
  4. B. Blakadar, Traces on simple AF $C^*$-algebras, J. Funct. Anal. 38 (1980), no. 2, 156-168 https://doi.org/10.1016/0022-1236(80)90062-2
  5. B. Blakadar, The stable rank of full corners in $C^*$-algebras, Proc. Amer. Math. Soc. 132 (2004), no. 10, 2945–2950 https://doi.org/10.1090/S0002-9939-04-07148-5
  6. B. Blakadar, Operator Algebras, Theory of $C^*$-algebras and von Neumann algebras, Encyclopaedia of Mathematical Sciences, 122. Operator Algebras and Non-commutative Geometry, III. Springer-Verlag, Berlin, 2006
  7. L. G. Brown, Stable isomorphism of hereditary subalgebras of $C^*$-algebras, Pacific J. Math. 71 (1977), no. 2, 335–348
  8. N. P. Brown, Topological entropy in exact $C^*$-algebras, Math. Ann. 314 (1999), no. 2, 347–367 https://doi.org/10.1007/s002080050298
  9. J. Cuntz and W. Krieger, A class of $C^*$-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268 https://doi.org/10.1007/BF01390048
  10. P. A. Fillmore, A User'S Guide to Operator Algebras, Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1996
  11. J. V. B. Hjelmborg, Purely infinite and stable $C^*$-algebras of graphs and dynamical systems, Ergodic Theory Dynam. Systems 21 (2001), no. 6, 1789–1808 https://doi.org/10.1017/S0143385701001857
  12. J. V. B. Hjelmborg and M. Rordam, On stability of $C^*$-algebras, J. Funct. Anal. 155 (1998), no. 1, 153–170 https://doi.org/10.1006/jfan.1997.3221
  13. J. A Jeong and G. H. Park, Dynamical systems in graph $C^*$-algebras, Internat. J. Math. 16 (2005), no. 9, 999–1015
  14. J. A Jeong and G. H. Park, Topological entropy and AF subalgebras of graph $C^*$-algebras, Proc. Amer. Math. Soc. 134 (2006), no. 1, 215–228 https://doi.org/10.1090/S0002-9939-05-08165-7
  15. J. A Jeong and G. H. Park, Topological entropy and graph $C^*-algebras C^*$(E) of irreducible infinite graphs E, submitted, 2007
  16. J. A Jeong and G. H. Park, Saturated actions by finite-dimensional Hopf *-algebras on $C^*$-algebras, Internat. J. Math. 19 (2008), no. 2, 125–144
  17. A. Kumjian and D. Pask, $C^*$-algebras of directed graphs and group actions, Ergodic Theory Dynam. Systems 19 (1999), no. 6, 1503–1519 https://doi.org/10.1017/S0143385799151940
  18. A. Kumjian, D. Pask, and I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184 (1998), no. 1, 161–174
  19. A. Kumjian, D. Pask, I. Raeburn, and J. Renault, Graphs, groupoids, and Cuntz-Krieger algebras, J. Funct. Anal. 144 (1997), no. 2, 505–541 https://doi.org/10.1006/jfan.1996.3001
  20. D. Pask and S.-J. Rho, Some intrinsic properties of simple graph $C^*$-algebras, Operator algebras and mathematical physics (Constanta, 2001), 325–340, Theta, Bucharest, 2003
  21. G. K. Pedersen, $C^*$-Algebras and Their Automorphism Groups, London Mathematical Society Monographs, 14. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979
  22. I. Raeburn, Graph Algebras, CBMS Regional Conference Series in Mathematics, 103. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2005
  23. M. A. Rieffel, Dimension and stable rank in the K-theory of $C^*$-algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301–333 https://doi.org/10.1112/plms/s3-46.2.301
  24. M. Rordam, Stable $C^*$-algebras, Operator algebras and applications, 177–199, Adv. Stud. Pure Math., 38, Math. Soc. Japan, Tokyo, 2004
  25. J. Renault, A groupoid approach to $C^*$-algebras, Lecture Notes in Mathematics, 793. Springer, Berlin, 1980
  26. J. Rosenberg, Appendix to: 'Crossed products of UHF algebras by product type actions' by O. Bratteli Duke Math. J. 46 (1979), no. 1, 25–26 https://doi.org/10.1215/S0012-7094-79-04602-7
  27. I. A. Salama, Topological entropy and recurrence of countable chains, Pacific J. Math. 134 (1988), no. 2, 325–341
  28. D. Voiculescu, Dynamical approximation entropies and topological entropy in operator algebras, Comm. Math. Phys. 170 (1995), no. 2, 249–281 https://doi.org/10.1007/BF02108329