References
- Tsuboi, H. et al. Paeoniflorin induces apoptosis of lymphocytes through a redox-linked mechanism. J Cell Biochem 93:162-172 (2004) https://doi.org/10.1002/jcb.20134
- Salunga, T. L. et al. Identification of genes responsive to paeoniflorin, a heat shock protein-inducing compound, in human leukemia U937 cells. Int J Hyperthermia 23:529-537 (2007) https://doi.org/10.1080/02656730701639499
- Hori, T. et al. Molecular mechanism of apoptosis and gene expressions in human lymphoma U937 cells treated with anisomycin. Chem Biol Interact 172:125-140 (2008) https://doi.org/10.1016/j.cbi.2007.12.003
- Jimenez A, V. D. Anisomycin and related antibiotics (ed. E, H. F.) Springer-Verlag, New York (1979)
- Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. & Greenberg, M. E. Opposing effects of ERK and JNKp38 MAP kinases on apoptosis. Science 270:1326-1331 (1995) https://doi.org/10.1126/science.270.5240.1326
- Zanke, B. W. et al. The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Curr Biol 6: 606-613 (1996) https://doi.org/10.1016/S0960-9822(02)00547-X
- Park, J. et al. Activation of c-Jun N-terminal kinase antagonizes an anti-apoptotic action of Bcl-2. J Biol Chem 272:16725-16728 (1997) https://doi.org/10.1074/jbc.272.27.16725
- Ogata, H. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 27, 29-34 (1999) https://doi.org/10.1093/nar/27.1.29
- Washida, K., Itoh, Y., Iwashita, T. & Nomoto, K. Androgen modulators from the roots of Paeonia lactiflora (paeoniae radix) grown and processed in nara prefecture, Japan. Chem Pharm Bull (Tokyo) 57:971-974 (2009) https://doi.org/10.1248/cpb.57.971
- Wu, H., Li, W., Wang, T., Shu, Y. & Liu, P. Paeoniflorin suppress NF-kappaB activation through modulation of I kappaB alpha and enhances 5-fluorouracilinduced apoptosis in human gastric carcinoma cells. Biomed Pharmacother 62:659-666 (2008) https://doi.org/10.1016/j.biopha.2008.08.002
- Hung, J. Y., Yang, C. J., Tsai, Y. M., Huang, H. W. & Huang, M. S. Antiproliferative activity of paeoniflorin is through cell cycle arrest and the Fas/Fas ligandmediated apoptotic pathway in human non-small cell lung cancer A549 cells. Clin Exp Pharmacol Physiol 35:141-147 (2008)
- Zhong, S. Z., Ge, Q. H., Li, Q., Qu, R. & Ma, S. P. Peoniflorin attentuates Abeta ((1-42))-mediated neurotoxicity by regulating calcium homeostasis and ameliorating oxidative stress in hippocampus of rats. J Neurol Sci 280:71-78 (2009) https://doi.org/10.1016/j.jns.2009.01.027
- Nizamutdinova, I. T. et al. Paeonol and paeoniflorin, the main active principles of Paeonia albiflora, protect the heart from myocardial ischemia/reperfusion injury in rats. Planta Med 74:14-18 (2008) https://doi.org/10.1055/s-2007-993775
- Jiang, B., Qiao, J., Yang, Y. & Lu, Y. Inhibitory effect of paeoniflorin on the inflammatory vicious cycle between adipocytes and macrophages. J Cell Biochem (2009) https://doi.org/10.1002/jcb.22173
- Zhang, L. L. et al. Paeoniflorin suppresses inflammatory mediator production and regulates G proteincoupled signaling in fibroblast-like synoviocytes of collagen induced arthritic rats. Inflamm Res 57:388- 395 (2008) https://doi.org/10.1007/s00011-007-7240-x
- Huang, H. et al. A genome-wide microarray analysis reveals anti-inflammatory target genes of paeonol in macrophages. Inflamm Res 57:189-198 (2008) https://doi.org/10.1007/s00011-007-7190-3
- Guo, Z., Wang, J., Yang, J., Wu, N. & Zhang, Y. The Role of p53 and p65 in heat shock-induced inhibition of cyclin D1. Biochim Biophys Acta 1789:758-762 (2009) https://doi.org/10.1016/j.bbagrm.2009.09.011
- Kulkarni, D. et al. A polymorphic variant in human MDM4 associates with accelerated age of onset of estrogen receptor negative breast cancer. Carcinogenesis 30:1910-1915 (2009) https://doi.org/10.1093/carcin/bgp224
- Regina, S. et al. Increased tissue factor expression is associated with reduced survival in non-small cell lung cancer and with mutations of TP53 and PTEN. Clin Chem 55:1834-1842 (2009) https://doi.org/10.1373/clinchem.2009.123695
- Feng, Z. et al. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 67:3043-3053 (2007) https://doi.org/10.1158/0008-5472.CAN-06-4149
- Konstantakou, E. G. et al. Human bladder cancer cells undergo cisplatin-induced apoptosis that is associated with p53-dependent and p53-independent responses. Int J Oncol 35:401-416 (2009) https://doi.org/10.3892/ijo_00000353
- Chen, H., Xia, Y., Fang, D., Hawke, D. & Lu, Z. Caspase- 10-mediated heat shock protein 90 beta cleavage promotes UVB irradiation-induced cell apoptosis. Mol Cell Biol 29:3657-3664 (2009) https://doi.org/10.1128/MCB.01640-08
- Walczak, H. & Haas, T. L. Biochemical analysis of the native TRAIL death-inducing signaling complex. Methods Mol Biol 414:221-239 (2008) https://doi.org/10.1007/978-1-59745-339-4_16
- Lamar, J. M., Iyer, V. & DiPersio, C. M. Integrin alpha3beta1 potentiates TGFbeta-mediated induction of MMP-9 in immortalized keratinocytes. J Invest Dermatol 128:575-586 (2008) https://doi.org/10.1038/sj.jid.5701042
- Sohn, K. H. et al. Genome wide expression profile of Asiasarum sieboldi in LPS-stimulated BV-2 Microglial Cells. Molecular & Cellular Toxicology 4:205-210 (2008)
- Raines, K. W. et al. Nitric oxide inhibition of ERK1 /2 activity in cells expressing neuronal nitric-oxide synthase. J Biol Chem 279:3933-3940 (2004) https://doi.org/10.1074/jbc.M304813200
- Sim, S. et al. NADPH oxidase-derived reactive oxygen species-mediated activation of ERK1/2 is required for apoptosis of human neutrophils induced by Entamoeba histolytica. J Immunol 174:4279-4288 (2005)