References
- Nebert, D. W. Polymorphisms in drug-metabolizing enzymes: what is their clinical relevance and why do they exist? (Editorial). Am J Hum Genet 60:265-271 (1997)
- Brosen, K. Some aspects of genetic polymorphism in the biotransformation of antidepressants. Therapie 59: 5-12 (2004) https://doi.org/10.2515/therapie:2004003
- Kirchheiner, J. et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 9:442-473 (2004) https://doi.org/10.1038/sj.mp.4001494
- Yin, O. Q. et al. Phenotype-genotype relationship and clinical effects of citalopram in Chinese patients. J Clin Psychopharmacol 26:367-372 (2006) https://doi.org/10.1097/01.jcp.0000227355.54074.14
- Grasmader, K. et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. European Journal of Clinical Pharmacology 60:329-336 (2004) https://doi.org/10.1007/s00228-004-0766-8
- Rau, T. et al. Cyp2d6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants- a pilot study. Clinical Pharmacology & Therapeutics 75:386-393 (2004) https://doi.org/10.1016/j.clpt.2003.12.015
- Murphy, G. M., Jr, Kremer, C., Rodrigues, H. E. & Schatzberg, A. F. Pharmacogenetics of antidepressant medication intolerance. American Journal of Psychiatry 160:1830-1835 (2003) https://doi.org/10.1176/appi.ajp.160.10.1830
- Suzuki, Y., Sawamura, K. & Someya, T. Polymorphisms in the 5-hydroxytryptamine 2A receptor and cytochrome P4502D6 genes synergistically predict fluvoxamine-induced side effects in Japanese depressed patients. Neuropsychopharmacology 31: 825-831 (2006) https://doi.org/10.1038/sj.npp.1300919
- Mrazek, D., Smoller, J. & de Leon, J. Incorporating pharmacogenetics into clinical practice: Reality of a new tool in psychiatry. CNS Spectr 11:1-13 (2006)
- De Boer, T. The effects of mirtazapine on central nora- drenergic and serotonergic neurotransmission. Int Clin Psychopharmacol 10(Suppl 4):19-23 (1995)
- De Boer, T. & Ruigt, G. S. F. The selective 2-adrenoceptor antagonist mirtazapine (Org 3770) enhances noradrenergic and 5-HT1A mediated serotonergic neurotransmission. CNS Drugs 4(Suppl 1):29-38 (1995) https://doi.org/10.2165/00023210-199500041-00006
-
De Boer, T., Ruigt, G. S. F. & Berendsen, H. H. G. The alpha2-selective adrenoceptor antagonist org 3770 (mirtazapine, Remeron
${\circledR}$ ) enhances noradrenergic and serotonergic transmission. Hum Psychopharmacol 10(S2):S107-S118 (1995) https://doi.org/10.1002/hup.470100805 - De Montigny, C., Haddjeri, N., Mongeau, R. & Blier, P. The effects of mirtazapine on the interactions between central noradrenergic and serotonergic systems. CNS Drugs 4(Suppl 1):13-17 (1995) https://doi.org/10.2165/00023210-199500041-00004
- Haddjeri, N., Blier, P. & de Montigny, C. Noradrenergic modulation of central serotonergic neurotransmission: acute and long-term actions of mirtazapine. Int Clin Psychopharmacol 10(Suppl 4):11-17 (1995)
- Anttila, S. A. & Leinonen, E. V. A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Reviews 7:249-64 (2001) https://doi.org/10.1111/j.1527-3458.2001.tb00198.x
- Fawcett, J. & Barkin, R. L. Review of the results from clinical studies on the efficacy, safety and tolerability of mirtazapine for the treatment of patients with major depression. J Affect Disord 51:267-285 (1998) https://doi.org/10.1016/S0165-0327(98)00224-9
- Nutt, D. J. Tolerability and safety aspects of mirtazapine. Hum Psychopharmacol 17(Suppl 1):S37-41 (2002) https://doi.org/10.1002/hup.388
- Timmer, C. J., Sitsen, J. M. & Delbressine, L. P. Clinical pharmacokinetics of mirtazapine. Clin Pharmacokinet 38:461-474 (2000) https://doi.org/10.2165/00003088-200038060-00001
- Droll, K. et al. Comparison of three CYP2D6 probe substrates and genotype in Ghanaians, Chinese and Caucasians. Pharmacogenetics 8:325-333 (1998) https://doi.org/10.1097/00008571-199808000-00006
- Duman, R. S. & Charney, D. S. Cell atrophy and loss in major depression. Biol Psychiatry 45:1083-1084 (1999) https://doi.org/10.1016/S0006-3223(99)00057-8
- Maisonpierre, P. C. et al. Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations. Genomics 10:558-568 (1991) https://doi.org/10.1016/0888-7543(91)90436-I
- Duman, R. S., Heninger, G. R. & Nestler, E. J. A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597-606 (1997) https://doi.org/10.1001/archpsyc.1997.01830190015002
- Tsai, S. J., Cheng, C. Y., Yu, Y. W., Chen, T. J. & Hong, C. J. Association study of a brain-derived neurotrophic- factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. Am J Med Genet B Neuropsychiatr Genet 123B:19-22 (2003) https://doi.org/10.1002/ajmg.b.20026
- Spina, E., Santoro, V. & D'Arrigo, C. Clinically relevant pharmacokinetic drug interactions with secondgeneration antidepressants: An update. Clin Therapeutics 30:1206-1227 (2008) https://doi.org/10.1016/S0149-2918(08)80047-1
- Sachse, C. B. J., Bauer, S. & Roots, I. Cytochrome 450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 60:284-295 (1997)
- Nishida, Y., Fukuda, T., Yamamoto, I. & Azuma, J. CYP2D6 genotypes in a Japanese population: low frequencies of CYP2D6 gene duplication but high frequency of CYP2D6*10. Pharmacogenetics 10:567-570 (2000) https://doi.org/10.1097/00008571-200008000-00010
- Lee, S.-Y. et al. Sequence-based CYP2D6 genotyping in the Korean population. Ther Drug Monit 28:382-387 (2006) https://doi.org/10.1097/01.ftd.0000211823.80854.db
- Ji, L. et al. Single-step assays to analyze CYP2D6 gene polymorphisms in Asians: allele frequencies and a novel *14B allele in mainland Chinese. Clin Chem 48:983-988 (2002)
- Bijl, M. J. et al. Association between the CYP2D6*4 polymorphism and depression or anxiety in the elderly. Pharmacogenomics 10:541-547 (2009) https://doi.org/10.2217/pgs.09.9
- Serretti, A. et al. Cytochrome P450 CYP1A2, CYP2C9, CYP2C19 and CYP2D6 genes are not associated with response and remission in a sample of depressive patients. Int Clin Psychopharmacol 24:250-256 (2009) https://doi.org/10.1097/YIC.0b013e32832e5b0d
- Chou, W. H. et al. Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J Clin Psychopharmacol 20:246-251 (2000) https://doi.org/10.1097/00004714-200004000-00019
- Laimer, M. et al. Effect of mirtazapine treatment on body composition and metabolism. J Clin Psychiatry 67:421-424 (2006) https://doi.org/10.4088/JCP.v67n0313
- Gorwood, P. Genetic association studies in behavioral neuroscience, in Handbook of molecular-genetic techniques for brain and behavior research, W. Cruzio and R. Gerlai, Editors. Elsevier: Amsterdam. 113-121(1999)
- Kim, J. W. Association study and the population admixture, in Human Neurobehavioral Genetics in the 21st Century. Korean Society of Biological Psychiatry: Seoul, Korea (2003)
- Frank, E. et al. Conceptualization and rationale for consensus definitions of terms in major depressive disorder. Remission, recovery, relapse, and recurrence. Arch Gen Psychiatry 48:851-855 (1991) https://doi.org/10.1001/archpsyc.1991.01810330075011
- Serretti, A. et al. SSRIs antidepressant activity is influenced by G beta 3 variants. Eur Neuropsychopharmacol 13:117-122 (2003) https://doi.org/10.1016/S0924-977X(02)00154-2
- Faul, F., Erdfelder, E., Buchner, A. & Lang, A. G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41:1149-1160 (2009) https://doi.org/10.3758/BRM.41.4.1149