Variation in Antioxidant Components of Black Soybean as Affected by Variety and Cultivation Region

재배지역에 따른 검정콩 항산화 성분의 함량변이

  • Published : 2009.03.31

Abstract

Aiming at development of region specialized crop, this study was conducted to clarify variety and cultivation region dependent on antioxidative compounds in black soybean seeds. For this purpose two black soybean varieties (Ilpumgeomjeongkong and Cheongjakong) were cultivated in 3 different regions (Hwaseong in Gyeonggido, Naju in Jeollanamdo and Jinju in Gyeongsangnamdo) in 2004 and 2005, and harvested seeds were used for isoflavone, anthocyanin and tocopherol contents along with electron donating ability-based antioxidative activities measurements. 100 grain weight between two varieties were not significantly different, but Hwaseong district showed higher 100 grain weight compared to Jinju and Naju. Ilpumgeomjeongkong was higher total isoflavone content ($1,064.9{\mu}g/g$) compared to Cheongjakong ($801.3{\mu}g/g$) in 2004, whereas Cheongjakong showed higher in 2005 compared to Ilpumgeomjeongkong. The highest isoflavone content was obtained in Hwaseong district in 2004, whereas it is the reverse in 2005 that Jinju district showed the highest isoflavone content. In total anthocyanin content, Ilpumgeomjeongkong (7.22 mg/g) was higher than that of Cheongjakong (6.83 mg/g), and Jinju district showed the highest total anthocyanin content (9.16 mg/g) compared to Naju and Hwaseong cultivating districts in their three cultivating districts. Total tocopherol content showed no significant difference between two varieties, but Hwaseong ($217.2{\mu}g/g$) and Jinju ($216.3{\mu}g/g$) districts showed higher content compared to Naju ($189.7{\mu}g/g$) among three cultivating districts. In tocopherol content ratio, $\gamma$-tocopherol was the highest from 56.2% to 59.9%. In electron donating ability (EDA) between two cultivars, Ilpumgeomjeongkong was significantly higher than Cheongjakong, and Naju was the highest of 55.6% among three cultivating districts.

품종 및 재배지역에 따른 생리활성성분(isoflavone, anthocyanin 및 tocopherol 함량, 항산화 활성)변이를 구명하여, 생리활성성분 고함유 품종선발과 생리활성성분 축적에 유리한 재배지역을 발굴하여 지역특화작목으로 선정하기 위한 기초자료로 활용하고자 연구한 결과는 다음과 같다. 100립중은 품종간에는 차이 없었으나, 지역간에는 2004년에는 뚜렷한 차이를 보였으나, 2005년에는 화성이나 진주보다 나주에서 현저하게 가벼웠다. 총 isoflavone 함량은 2004년에는 일품검정콩이 $1,064.9{\mu}g/g$으로 청자콩의 $801.3{\mu}g/g$에 비해 높았으나, 2005년에는 오히려 일품검정콩에 비해 청자콩이 높았다. 재배지역간에는 2004년에는 두 품종 모두 화성지역에서 뚜렷하게 높았으나, 2005년에는 진주지역이 화성이나 나주보다 현저하게 높았다. 총 anthocyanin 함량은 품종 간에는 일품검정콩이 7.22 mg/g으로 청자콩의 6.83 mg/g에 비해 높았으며, 재배지역간에는 진주지역에서 9.16 mg/g으로 나주, 화성지역에 비해 가장 높았다. 총 tocopherol 함량은 품종 간에는 큰 차이가 없었으며, 지역 간에는 화성, 진주지역이 각각 $217.2{\mu}g/g$, $216.3{\mu}g/g$으로 나주지역 $189.7{\mu}g/g$에 비해 높았다. tocopherol 성분비율은 $\gamma$-tocopherol이 $56.2{\sim}59.9%$로 가장 높았다. 전자공여능은 품종간에는 일품검정콩이 청자콩보다, 지역간에는 화성이나 진주보다 나주에서 EDA 값이 55.6%로 가장 높았다.

Keywords

References

  1. Eldridge, A. C., and W. F. Kwolek. 1983. Soybean Isoflavones:Effect of environment and variety on composition. J. Agric. Food Chem. 31 : 394-396 https://doi.org/10.1021/jf00116a052
  2. Elmadfa, I, and Bosse, W. 1985. Vitamin E. Wissenschaftliche Verlagsgesellschaft mbH., Stuttgart. p. 50
  3. Joo, Y. H., J. H. Park, M. G. Choung, S. G. Yun, and K. W. Chung. 2004. Variation of contents and color difference of anthocyanin by different cultivation year in black soybean seed. Korean J. Crop Sci. 49(6) : 507-511
  4. Jung, C. S., Y. J. Park, Y. C. Kwon, and H. S. Suh. 1996. Variation of anthocyanin content in color-soybean collections. Korean J. Crop Sci. 41(3) : 302-307
  5. Kim, S. H., T. W. Kwon, Y. S. Lee, M. G. Choung, and G. S. Moon. 2005. A major antioxdative componenets and comparision of antioxidative activities in black soybean. Korean J. Food Sci. Thchnol. 37(10) : 73-77
  6. Kim, S. R., H. D. Kim, and S. S. Kim. 1999. Some properties and contents of isoflavone in soybean and soybean foods. Korea Soybean Digest 16(2) : 35-46
  7. Kim, Y. H. 2003. Biological activities of soyasaponins and their genetic and environmental variations in soybean. Korean J. crop Sci. 48(S) : 49-57
  8. Kim, Y. H., S. D. Kim, E. H. Hong, and W. S. Ahn. 1996. physiological function of isoflavones and their genetic and environmental variations in soybean. Korean J. Crop Sci. 41(Spe. 1) : 25-45
  9. Kitamura, K., K. Ijita, A. Kikuchi, S. Kodou, and K. Okubo. 1991. Low isoflavone content in some early maturing cultivars, so-called 'summertype soybeans' (Glycine max (L) Merrill). Japan J. Breeding 41 : 651-654
  10. Lee, H, O. 1993. Antioxidant effect of tocopherols and tocotrienols and cis / trans -, trans / trans - hydroperoxide isomer from linoleic acid methylester. Korean J. Food Sci. Technol. 25(3) : 307-312
  11. Lee, M. H., Y. H. Park, H. S. Oh, and T. S. Kwak. 2002. Isoflavone content in soybean and its processed products. Korean J. Food Sci. Thchnol. 34(3) : 365-369
  12. Morris, P. F., M. E. Savard, and E. B. Ward. 1991. Identification and accumulation of isoflavonoidses and isoflavone glucosides in soybean leaves and hypocotyls in resistance response to Phytophtora megasperma f. sp. glycinea. Physiol. Molecular Plant Pathol 39(3) : 229-244 https://doi.org/10.1016/0885-5765(91)90006-4
  13. Mun, G. S., T. W. Kwon, and S. H. Lyu. 2003. Comparison of antioxidative activities of soybean components by different assays. Korean Soybean Digest 20(1) : 28-36
  14. Oh, H. N. 2001. Accumulation of anthocyanin and storage compound in the seeds of Yakkong [Glycine max L. Merr.] and dolkong [Glycine soya S. et Z.]. Korea Univ. Thesis for degree of master of science
  15. Park J. H., 2003. Studies on the agronomic characteristics and anthocyanin in coloured soybean [Glycine Max (L.) Merr.]. Dankuk Univ. Thesis for degree of master of science
  16. Pratt, D. E., C. D. Pietro, W. L. Porter, and J. W. Giffee. 1982. Phenolic antioxidants of soy protein in hydrolyzates. J. Food Sci. 47 : 24 https://doi.org/10.1111/j.1365-2621.1982.tb11018.x
  17. Tsukamoto, C., S. Shimata, K. Igita, S. Kudou, M. Kokubun, K. Okubo, and K. Kitamura. 1995. Factors affecting isoflavone content in soybean seeds; Change in isoflavone, saponin, and composition of fatty acids at different temperature during seed development. J. of agricultural and food chemistry 43(5) : 1184-1192 https://doi.org/10.1021/jf00053a012
  18. Tsuta, T., K. Shiga, K, Ohshima, S. Kawakishi, and T. Osawa. 1996. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from phaseolus vulgaris L. Biochem Pharmacol. 52 : 1033- 1039 https://doi.org/10.1016/0006-2952(96)00421-2
  19. Wang, H. J. and P. A. Murphy. 1994. Isoflavone composition of american and japanese soybeans in Iowa : Effects of variety, crop year and location. J. Agric. Food Chem. 42 : 1674-1677 https://doi.org/10.1021/jf00044a017
  20. Yi, E. S. 2005. Variation of antioxidant components as affected by sowing date and cultivation region in black soybean (Glycine max (L.) merr.) varieties. Dankook univer. Thesis for Degree of Doctorate
  21. Yoshida, K., Sato, Y., Okuno, R., Kameda, K., Isobe, M., and Y. Kondo. 1996. Structural analysis and measurement of anthocyanin from colored seed coats of Vigna, Phaseous, and Glycine legumes. Biosci. Biotechnol. Biochem. 60:589-593 https://doi.org/10.1271/bbb.60.589
  22. 과학기술정보통합서비스. 2002. 영국 JHCI, 대두의 health claim을 허가(건강산업신문. 2002. 9. 9) http://www.ndsl.kr/brief.do
  23. 이재헌, 정영수, 김기영, 신상현, 정종인. 2004. 검정콩에서 기능성물질 안토시아닌 함량 증가를 위한 분자육종학적 연구. 농림부. 최종연구보고서