DOI QR코드

DOI QR Code

CO2 Absorption in Sodium Solution at High Pressure

고압에서의 나트륨계 흡수용액의 이산화탄소 흡수특성

  • Oh, Myoung-Seog (Department of Civil & Environmental Engineering, Kunsan National University) ;
  • Lee, Jin-Woo (Department of Environmental Energy System Engineering, Kyounggi University) ;
  • Cha, Wang-Seog (Department of Civil & Environmental Engineering, Kunsan National University)
  • 오명석 (군산대학교 토목환경공학부) ;
  • 이진우 (경기대학교 환경에너지시스템공학과) ;
  • 차왕석 (군산대학교 토목환경공학부)
  • Published : 2009.03.31

Abstract

The absorption capacity and initial absorption rate in 5 %, 10%, 15 % and 20% $Na_{2}CO_{3}$ under the constant temperature at $40^{\circ}C$ and the initial absorption rate in mixture of different alkaline salts such as $KHCO_3$, $CaCO_3$ and $K_{2}CO_{3}$ were measured using batch type stirred cell contractor. 10% $Na_{2}CO_{3}$ showed the highest absorption capacity and $Na_{2}CO_{3}$ and $K_{2}CO_{3}$ showed the somewhat increased absorption capacity and initial absorption rate respectively. Further more, we have studied the effect of adding Pz and Pp to $Na_{2}CO_{3}$. The result showed that absorption rate of $CO_2$ was increased by adding these additives.

나트륨계 흡수용액의 이산화탄소흡수특성을 알아보기 위하여 회분식 기-액 흡수평형 반응기를 이용하여 $Na_{2}CO_{3}$ 5%, 10%, 15%, 20% 수용액에 대한 이산화탄소 흡수능 및 초기흡수속도를 측정하였으며 반응온도는 $40^{\circ}C$이었다. 또한, 알칼리염계 흡수제($KHCO_3$, $CaCO_3$, $K_{2}CO_{3}$)들의 혼합에 따른 초기흡수속도를 비교하였다. 농도에 따른 실험결과 10%의 $Na_{2}CO_{3}$에서 가장 좋은 흡수능 및 흡수속도를 보였고, 알칼리염계 흡수제들 중에서 $K_{2}CO_{3}$와 혼합할 때 흡수속도가 다소 증가되었다. $Na_{2}CO_{3}$ 5% 용액의 초기흡수속도를 개선시키기 위하여 Pz와 Pp를 각각 첨가하여 실험한 결과, 증진제를 첨가함으로써 초기흡수속도를 증가시킬 수 있었다.

Keywords

References

  1. M. Williams., "Climate change: information kit. Geneva: the United Nations Environment Programme (UNEP) and the United Nations Framework Convention on Climate Change", UNFCCC, 2002.
  2. Y. G. Li., A. E. Mather., "Correlation and prediction of the solubility of carbon dioxide in a mixed alkanolamine solution", Ind. Eng. Chem. Res., pp 2006-2015, 1994.
  3. F. Y. Jou, A. E. Mather, F. D. Otto, "The solubility of $CO_2$ in a masspercent monoethanolamine solution", Can. J. Chem. Eng., pp. 140-147, 1995.
  4. Y. Liu, L. Zhang, S. Watanasiri, "Representing vapor-liquid equilibrium for an aqueous $MEA-CO_2$ system using the electrolyte nonrandom-two-liquid model", Ind. Eng. Chem. Res., pp. 2080-2090, 1999.
  5. S. Ma'mun, H. F. Svendsen, K. A. Hoff, O. Juliussen, "Selection of new absorbents for carbon dioxide capture", Energy Conversion and Management, pp. 251-258, 2007.
  6. Andrea Corti. "Thermoeconomic evaluation of $CO_2$ alkali absorption system applied to semi-closed gast urbine combined cycle" Energy. 29, pp. 415-426. 2004. https://doi.org/10.1016/j.energy.2003.10.005
  7. K. B. Lee, A. Verdooren, H. S. Caram, S. Sircar "Chemisorption of carbon dioxide on potassium-­carbonate-promoted hydrotalcite" Journal of Colloid and Interface Science. 308, pp. 30-39, 2007. https://doi.org/10.1016/j.jcis.2006.11.011
  8. J. Tim cullinane, G. T. Rochelle, "Thermody-namics of aqueous potassium carbonate, piperazine, and carbon dioxide", Fluid Phase Equilibria, pp. 197-213, 2005.
  9. J. Tim Cullinane, Gary T. Rochelle, " Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine", Chemical Engineering Science, 59, pp. 3619-3630, 2004 https://doi.org/10.1016/j.ces.2004.03.029

Cited by

  1. Absorption Characteristics of Physical Solvent at High Pressure vol.24, pp.4, 2013, https://doi.org/10.7316/KHNES.2013.24.4.334