DOI QR코드

DOI QR Code

Applications of Transposon-Based Gene Delivery System in Bacteria

  • Choi, Kyoung-Hee (Department of Oral Microbiology, College of Dentistry, Wonkwang University) ;
  • Kim, Kang-Ju (Department of Oral Microbiology, College of Dentistry, Wonkwang University)
  • Received : 2008.11.11
  • Accepted : 2008.12.10
  • Published : 2009.03.31

Abstract

Mobile genetic segments, or transposons, are also referred to as jumping genes as they can shift from one position in the genome to another, thus inducing a chromosomal mutation. According to the target site-specificity of the transposon during a transposition event, the result is either the insertion of a gene of interest at a specific chromosomal site, or the creation of knockout mutants. The former situation includes the integration of conjugative transposons via site-specific recombination, several transposons preferring a target site of a conserved AT-rich sequence, and Tn7 being site-specifically inserted at attTn7, the downstream of the essential glmS gene. The latter situation is exploited for random mutagenesis in many prokaryotes, including IS (insertion sequence) elements, mariner, Mu, Tn3 derivatives (Tn4430 and Tn917), Tn5, modified Tn7, Tn10, Tn552, and Ty1, enabling a variety of genetic manipulations. Randomly inserted transposons have been previously employed for a variety of applications such as genetic footprinting, gene transcriptional and translational fusion, signature-tagged mutagenesis (STM), DNA or cDNA sequencing, transposon site hybridization (TraSH), and scanning linker mutagenesis (SLM). Therefore, transposon-mediated genetic engineering is a valuable discipline for the study of bacterial physiology and pathogenesis in living hosts.

Keywords

References

  1. Akerley, B. J., E. J. Rubin, A. Camilli, D. J. Lampe, H. M. Robertson, and J. J. Mekalanos. 1998. Systematic identification of essential genes by in vitro mariner mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 95: 8927-8932 https://doi.org/10.1073/pnas.95.15.8927
  2. Akerley, B. J., E. J. Rubin, V. L. Novick, K. Amaya, N. Judson, and J. J. Mekalanos. 2002. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sci. U.S.A. 99:966-971 https://doi.org/10.1073/pnas.012602299
  3. Albano, M. A., J. Arroyo, B. I. Eisenstein, and N. C. Engleberg. 1992. phoA gene fusions in Legionella pneumophila generated in vivo using a new transposon, MudphoA. Mol. Microbiol. 6: 1829-1839 https://doi.org/10.1111/j.1365-2958.1992.tb01355.x
  4. Badarinarayana, V., P. W. Estep 3rd, J. Shendure, J. Edwards, S. Tavazoie, F. Lam, and G. M. Church. 2001. Selection analyses of insertional mutants using subgenic-resolution arrays. Nat. Biotechnol. 19: 1060-1065 https://doi.org/10.1038/nbt1101-1060
  5. Bainton, R. J., K. M. Kubo, J. N. Feng, and N. L. Craig. 1993. Tn7 transposition: Target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72: 931-943 https://doi.org/10.1016/0092-8674(93)90581-A
  6. Baitin, D. M., E. N. Zaitsev, and V. A. Lanzov. 2003. Hyperrecombinogenic RecA protein from Pseudomonas aeruginosa with enhanced activity of its primary DNA binding site. J. Mol. Biol. 328: 1-7 https://doi.org/10.1016/S0022-2836(03)00242-0
  7. Biery, M. C., M. Lopata, and N. L. Craig. 2000. A minimal system for Tn7 transposition: The transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn7 species. J. Mol. Biol. 297: 25-37 https://doi.org/10.1006/jmbi.2000.3558
  8. Bourhy, P., H. Louvel, I. Saint Girons, and M. Picardeau. 2005. Random insertional mutagenesis of Leptospira interrogans, the agent of leptospirosis, using a mariner transposon. J. Bacteriol. 187: 3255-3258 https://doi.org/10.1128/JB.187.9.3255-3258.2005
  9. Braunstein, M., T. I. Griffin, J. I. Kriakov, S. T. Friedman, N. D. Grindley, and W. R. Jacobs Jr. 2000. Identification of genes encoding exported Mycobacterium tuberculosis proteins using a Tn552'phoA in vitro transposition system. J. Bacteriol. 182:2732-2740 https://doi.org/10.1128/JB.182.10.2732-2740.2000
  10. Bubeck, A., M. Wagner, Z. Ruzsics, M. Lotzerich, M. Iglesias, I. R. Singh, and U. H. Koszinowski. 2004. Comprehensive mutational analysis of a herpesvirus gene in the viral genome context reveals a region essential for virus replication. J. Virol. 78: 8026-8035 https://doi.org/10.1128/JVI.78.15.8026-8035.2004
  11. Butterfield, Y. S., M. A. Marra, J. K. Asano, S. Y. Chan, R. Guin, M. I. Krzywinski, et al. 2002. An efficient strategy for large-scale high-throughput transposon-mediated sequencing of cDNA clones. Nucleic Acids Res. 30: 2460-2468 https://doi.org/10.1093/nar/30.11.2460
  12. Caiazza, N. C. and G. A. O'Toole. 2004. SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14. J. Bacteriol. 186: 4476-4485 https://doi.org/10.1128/JB.186.14.4476-4485.2004
  13. Chan, K., C. C. Kim, and S. Falkow. 2005. Microarray-based detection of Salmonella enterica serovar Typhimurium transposon mutants that cannot survive in macrophages and mice. Infect. Immun. 73: 5438-5449 https://doi.org/10.1128/IAI.73.9.5438-5449.2005
  14. Cheng, Q., B. J. Paszkiet, N. B. Shoemaker, J. F. Gardner, and A. A. Salyers. 2000. Integration and excision of a Bacteroides conjugative transposon, CTnDOT. J. Bacteriol. 182: 4035-4043 https://doi.org/10.1128/JB.182.14.4035-4043.2000
  15. Choi, K.-H., D. DeShazer, and H. P. Schweizer. 2006. mini-Tn7 insertion in bacteria with multiple glmS-linked attTn7 sites: Example Burkholderia mallei ATCC 23344. Nat. Protocols 1: 162-169 https://doi.org/10.1038/nprot.2006.25
  16. Choi, K.-H., J. B. Gaynor, K. G. White, C. Lopez, C. M. Bosio, R. R. Karkhoff-Schweizer, and H. P. Schweizer. 2005. A Tn7-based broad-range bacterial cloning and expression system. Nat. Methods 2: 443-448 https://doi.org/10.1038/nmeth765
  17. Choi, K.-H., T. Mima, Y. C. Quintero, D. Rholl, A. Kumar, I. R. Beacham, and H. P. Schweizer. 2008. Genetic tools for select agent compliant manipulation of Burkholderia pseudomallei. Appl. Environ. Microbiol. 74: 1064-1075 https://doi.org/10.1128/AEM.02430-07
  18. Choi, K.-H. and H. P. Schweizer. 2006. mini-Tn7 insertion in bacteria with secondary, non-glmS-linked attTn7 sites: Example Proteus mirabilis HI4320. Nat. Protocols 1: 170-178 https://doi.org/10.1038/nprot.2006.26
  19. Choi, Y. J., D. Bourque, L. Morel, D. Groleau, and C. B. Miguez. 2006. Multicopy integration and expression of heterologous genes in Methylobacterium extorquens ATCC 55366. Appl. Environ. Microbiol. 72: 753-759 https://doi.org/10.1128/AEM.72.1.753-759.2006
  20. Colegio, O. R., T. J. T. Griffin, N. D. Grindley, and J. E. Galan. 2001. In vitro transposition system for efficient generation of random mutants of Campylobacter jejuni. J. Bacteriol. 183: 2384-2388 https://doi.org/10.1128/JB.183.7.2384-2388.2001
  21. Craig, N. L. 1989. Transposon Tn7, pp. 211-225. In D. E. Berg and M. M. Howe (eds.) Mobile DNA. American Society for Microbiology, Washington, DC
  22. Craig, N. L. 1996. Transposon Tn7. Curr. Top. Microbiol. Immunol. 204: 27-48
  23. Craig, N. L. 1997. Target site selection in transposition. Annu. Rev. Biochem. 66: 437-474 https://doi.org/10.1146/annurev.biochem.66.1.437
  24. Cvitkovitch, D. G., J. A. Gutierrez, J. Behari, P. J. Youngman, J. E. Wetz, P. J. Crowley, J. D. Hillman, L. J. Brady, and A. S. Bleiweis. 2000. Tn917-lac mutagenesis of Streptococcus mutans to identify environmentally regulated genes. FEMS Microbiol. Lett. 182: 149-154 https://doi.org/10.1111/j.1574-6968.2000.tb08889.x
  25. de Lorenzo, V., M. Herrero, U. Jakubzik, and K. N. Timmis. 1990. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J. Bacteriol. 172: 6568-6572 https://doi.org/10.1128/jb.172.11.6568-6572.1990
  26. Espinosa-Urgel, M. and J. L. Ramos. 2001. Expression of a Pseudomonas putida aminotransferase involved in lysine catabolism is induced in the rhizosphere. Appl. Environ. Microbiol. 67: 5219-5224 https://doi.org/10.1128/AEM.67.11.5219-5224.2001
  27. Fleischmann, R. D., M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R. Kerlavage, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496-512 https://doi.org/10.1126/science.7542800
  28. Geoffroy, M. C., S. Floquet, A. Metais, X. Nassif, and V. Pelicic. 2003. Large-scale analysis of the meningococcus genome by gene disruption: Resistance to complementmediated lysis. Genome Res. 13: 391-398 https://doi.org/10.1101/gr.664303
  29. Gerdes, S. Y., M. D. Scholle, J. W. Campbell, G. Balazsi, E. Ravasz, M. D. Daugherty, et al. 2003. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol. 185: 5673-5684 https://doi.org/10.1128/JB.185.19.5673-5684.2003
  30. Glass, J. I., N. Assad-Garcia, N. Alperovich, S. Yooseph, M. R. Lewis, M. Maruf, C. A. Hutchison 3rd, H. O. Smith, and J. C. Venter. 2006. Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. U.S.A. 103: 425-430 https://doi.org/10.1073/pnas.0510013103
  31. Godoy, P., M. I. Ramos-Gonzalez, and J. L. Ramos. 2001. Involvement of the TonB system in tolerance to solvents and drugs in Pseudomonas putida DOT-T1E. J. Bacteriol. 183:5285-5292 https://doi.org/10.1128/JB.183.18.5285-5292.2001
  32. Golden, N. J., A. Camilli, and D. W. Acheson. 2000. Random transposon mutagenesis of Campylobacter jejuni. Infect. Immun. 68: 5450-5453 https://doi.org/10.1128/IAI.68.9.5450-5453.2000
  33. Grant, A. J., C. Coward, M. A. Jones, C. A. Woodall, P. A. Barrow, and D. J. Maskell. 2005. Signature-tagged transposon mutagenesis studies demonstrate the dynamic nature of cecal colonization of 2-week-old chickens by Campylobacter jejuni. Appl. Environ. Microbiol. 71: 8031-8041 https://doi.org/10.1128/AEM.71.12.8031-8041.2005
  34. Griffin, T. J. 4th, L. Parsons, A. E. Leschziner, J. DeVost, K. M. Derbyshire, and N. D. Grindley. 1999. In vitro transposition of Tn552: A tool for DNA sequencing and mutagenesis. Nucleic Acids Res. 27: 3859-3865 https://doi.org/10.1093/nar/27.19.3859
  35. Gueguen, E., P. Rousseau, G. Duval-Valentin, and M. Chandler. 2005. The transpososome: Control of transposition at the level of catalysis. Trends Microbiol. 13: 543-549 https://doi.org/10.1016/j.tim.2005.09.002
  36. Guo, B. P. and J. J. Mekalanos. 2001. Helicobacter pylori mutagenesis by mariner in vitro transposition. FEMS Immunol. Med. Microbiol. 30: 87-93 https://doi.org/10.1111/j.1574-695X.2001.tb01554.x
  37. Gwinn, M. L., A. E. Stellwagen, N. L. Craig, J. F. Tomb, and H. O. Smith. 1997. In vitro Tn7 mutagenesis of Haemophilus influenzae Rd and characterization of the role of atpA in transformation. J. Bacteriol. 179: 7315-7320 https://doi.org/10.1128/jb.179.23.7315-7320.1997
  38. Haapa, S., S. Suomalainen, S. Eerikainen, M. Airaksinen, L. Paulin, and H. Savilahti. 1999. An efficient DNA sequencing strategy based on the bacteriophage Mu in vitro DNA transposition reaction. Genome Res. 9: 308-315
  39. Haapa, S., S. Taira, E. Heikkinen, and H. Savilahti. 1999. An efficient and accurate integration of mini-Mu transposons in vitro: A general methodology for functional genetic analysis and molecular biology applications. Nucleic Acids Res. 27:2777-2784 https://doi.org/10.1093/nar/27.13.2777
  40. Halling, S. M. and N. Kleckner. 1982. A symmetrical six-basepair target site sequence determines Tn10 insertion specificity. Cell 28: 155-163 https://doi.org/10.1016/0092-8674(82)90385-3
  41. Hare, R. S., S. S. Walker, T. E. Dorman, J. R. Greene, L. M. Guzman, T. J. Kenney, et al. 2001. Genetic footprinting in bacteria. J. Bacteriol. 183: 1694-1706 https://doi.org/10.1128/JB.183.5.1694-1706.2001
  42. Hayashi, T., K. Makino, M. Ohnishi, K. Kurokawa, K. Ishii, K. Yokoyama, et al. 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8: 11-22 https://doi.org/10.1093/dnares/8.1.11
  43. Hayes, F. 2003. Transposon-based strategies for microbial functional genomics and proteomics. Annu. Rev. Genet. 37: 3-29 https://doi.org/10.1146/annurev.genet.37.110801.142807
  44. Hayes, F., C. Cayanan, D. Barilla, and A. N. Monteiro. 2000. Functional assay for BRCA1: Mutagenesis of the COOHterminal region reveals critical residues for transcription activation. Cancer Res. 60: 2411-2418
  45. Hayes, F. and B. Hallet. 2000. Pentapeptide scanning mutagenesis:Encouraging old proteins to execute unusual tricks. Trends Microbiol. 8: 571-577 https://doi.org/10.1016/S0966-842X(00)01857-6
  46. Hendrixson, D. R. and V. J. DiRita. 2004. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52: 471-484 https://doi.org/10.1111/j.1365-2958.2004.03988.x
  47. Hensel, M., J. E. Shea, C. Gleeson, M. D. Jones, E. Dalton, and D. W. Holden. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269: 400-403 https://doi.org/10.1126/science.7618105
  48. Heungens, K., C. E. Cowles, and H. Goodrich-Blair. 2002. Identification of Xenorhabdus nematophila genes required for mutualistic colonization of Steinernema carpocapsae nematodes. Mol. Microbiol. 45: 1337-1353 https://doi.org/10.1046/j.1365-2958.2002.03100.x
  49. Hochhut, B. and M. K. Waldor. 1999. Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol. Microbiol. 32: 99-110 https://doi.org/10.1046/j.1365-2958.1999.01330.x
  50. Hoffmaster, A. R. and T. M. Koehler. 1999. Control of virulence gene expression in Bacillus anthracis. J. Appl. Microbiol. 87:279-281 https://doi.org/10.1046/j.1365-2672.1999.00887.x
  51. Jones, A. L., K. M. Knoll, and C. E. Rubens. 2000. Identification of Streptococcus agalactiae virulence genes in the neonatal rat sepsis model using signature-tagged mutagenesis. Mol. Microbiol. 37: 1444-1455 https://doi.org/10.1046/j.1365-2958.2000.02099.x
  52. Kersulyte, D., B. Velapatino, G. Dailide, A. K. Mukhopadhyay, Y. Ito, L. Cahuayme, A. J. Parkinson, R. H. Gilman, and D. E. Berg. 2002. Transposable element ISHp608 of Helicobacter pylori: Nonrandom geographic distribution, functional organization, and insertion specificity. J. Bacteriol. 184: 992-1002 https://doi.org/10.1128/jb.184.4.992-1002.2002
  53. Klee, S. R., X. Nassif, B. Kusecek, P. Merker, J. L. Beretti, M. Achtman, and C. R. Tinsley. 2000. Molecular and biological analysis of eight genetic islands that distinguish Neisseria meningitidis from the closely related pathogen Neisseria gonorrhoeae. Infect. Immun. 68: 2082-2095 https://doi.org/10.1128/IAI.68.4.2082-2095.2000
  54. Koch, B., L. E. Jensen, and O. Nybroe. 2001. A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J. Microbiol. Methods 45: 187-195 https://doi.org/10.1016/S0167-7012(01)00246-9
  55. Kuduvalli, P. N., R. Mitra, and N. L. Craig. 2005. Site-specific Tn7 transposition into the human genome. Nucleic Acids Res. 33: 857-863 https://doi.org/10.1093/nar/gki227
  56. Kumar, A., M. Seringhaus, M. C. Biery, R. J. Sarnovsky, L. Umansky, S. Piccirillo, et al. 2004. Large-scale mutagenesis of the yeast genome using a Tn7-derived multipurpose transposon. Genome Res. 14: 1975-1986 https://doi.org/10.1101/gr.2875304
  57. Laasik, E., M. Ojarand, M. Pajunen, H. Savilahti, and A. Mae. 2005. Novel mutants of Erwinia carotovora subsp. carotovora defective in the production of plant cell wall degrading enzymes generated by Mu transpososome-mediated insertion mutagenesis. FEMS Microbiol. Lett. 243: 93-99 https://doi.org/10.1016/j.femsle.2004.11.045
  58. Lamberg, A., S. Nieminen, M. Qiao, and H. Savilahti. 2002. Efficient insertion mutagenesis strategy for bacterial genomes involving electroporation of in vitro-assembled DNA transposition complexes of bacteriophage Mu. Appl. Environ. Microbiol. 68:705-712 https://doi.org/10.1128/AEM.68.2.705-712.2002
  59. Lambert, A., M. Osteras, K. Mandon, M. C. Poggi, and D. Le Rudulier. 2001. Fructose uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system. J. Bacteriol. 183: 4709-4717 https://doi.org/10.1128/JB.183.16.4709-4717.2001
  60. Lambertsen, L., C. Sternberg, and S. Molin. 2004. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ. Microbiol. 6: 726-732 https://doi.org/10.1111/j.1462-2920.2004.00605.x
  61. Lavoie, B. D. and G. Chaconas. 1994. A second high affinity HU binding site in the phage Mu transpososome. J. Biol. Chem. 269: 15571-15576
  62. Le Breton, Y., N. P. Mohapatra, and W. G. Haldenwang. 2006. In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Appl. Environ. Microbiol. 72: 327-333 https://doi.org/10.1128/AEM.72.1.327-333.2006
  63. Lemos, M. L. and J. H. Crosa. 1992. Highly preferred site of insertion of Tn7 into the chromosome of Vibrio anguillarum. Plasmid 27: 161-163 https://doi.org/10.1016/0147-619X(92)90016-4
  64. Lewenza, S., R. K. Falsafi, G. Winsor, W. J. Gooderham, J. B. McPhee, F. S. Brinkman, and R. E. Hancock. 2005. Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa PAO1: A tool for identifying differentially regulated genes. Genome Res. 15: 583-589 https://doi.org/10.1101/gr.3513905
  65. Liberati, N. T., J. M. Urbach, S. Miyata, D. G. Lee, E. Drenkard, G. Wu, J. Villanueva, T. Wei, and F. M. Ausubel. 2006. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. U.S.A. 103: 2833-2838 https://doi.org/10.1073/pnas.0511100103
  66. Lichtenstein, C. and S. Brenner. 1982. Unique insertion site of Tn7 in the E. coli chromosome. Nature 297: 601-603 https://doi.org/10.1038/297601a0
  67. Lo, C., K. Adachi, J. R. Shuster, J. E. Hamer, and L. Hamer. 2003. The bacterial transposon Tn7 causes premature polyadenylation of mRNA in eukaryotic organisms: TAGKO mutagenesis in filamentous fungi. Nucleic Acids Res. 31: 4822-4827 https://doi.org/10.1093/nar/gkg676
  68. Mandin, P., H. Fsihi, O. Dussurget, M. Vergassola, E. Milohanic, A. Toledo-Arana, I. Lasa, J. Johansson, and P. Cossart. 2005. VirR, a response regulator critical for Listeria monocytogenes virulence. Mol. Microbiol. 57: 1367-1380 https://doi.org/10.1111/j.1365-2958.2005.04776.x
  69. Manoil, C. 2000. Tagging exported proteins using Escherichia coli alkaline phosphatase gene fusions. Methods Enzymol. 326:35-47 https://doi.org/10.1016/S0076-6879(00)26045-X
  70. McCann, J., E. V. Stabb, D. S. Millikan, and E. G. Ruby. 2003. Population dynamics of Vibrio fischeri during infection of Euprymna scolopes. Appl. Environ. Microbiol. 69: 5928-5934 https://doi.org/10.1128/AEM.69.10.5928-5934.2003
  71. McClain, M. S. and N. C. Engleberg. 1996. Construction of an alkaline phosphatase fusion-generating transposon, mTn10phoA. Gene 170: 147-148 https://doi.org/10.1016/0378-1119(95)00856-X
  72. Mizuuchi, K. 1992. Transpositional recombination: Mechanistic insights from studies of Mu and other elements. Annu. Rev. Biochem. 61: 1011-1051 https://doi.org/10.1146/annurev.bi.61.070192.005051
  73. Mizuuchi, M., T. A. Baker, and K. Mizuuchi. 1995. Assembly of phage Mu transpososomes: Cooperative transitions assisted by protein and DNA scaffolds. Cell 83: 375-385 https://doi.org/10.1016/0092-8674(95)90115-9
  74. Morgan, G. J., G. F. Hatfull, S. Casjens, and R. W. Hendrix. 2002. Bacteriophage Mu genome sequence: Analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J. Mol. Biol. 317: 337-359 https://doi.org/10.1006/jmbi.2002.5437
  75. Oppon, J. C., R. J. Sarnovsky, N. L. Craig, and D. E. Rawlings. 1998. A Tn7-like transposon is present in the glmUS region of the obligately chemoautolithotrophic bacterium Thiobacillus ferrooxidans. J. Bacteriol. 180: 3007-3012
  76. Paik, S., L. Senty, S. Das, J. C. Noe, C. L. Munro, and T. Kitten. 2005. Identification of virulence determinants for endocarditis in Streptococcus sanguinis by signature-tagged mutagenesis. Infect. Immun. 73: 6064-6074 https://doi.org/10.1128/IAI.73.9.6064-6074.2005
  77. Park, J. S., S. J. Lee, H. G. Rhie, and H. S. Lee. 2008. Characterization of a chromosomal nickel resistance determinant from Klebsiella oxytoca CCUG 15788. J. Microbiol. Biotechnol. 18: 1040-1043
  78. Parkhill, J., M. Achtman, K. D. James, S. D. Bentley, C. Churcher, S. R. Klee, et al. 2000. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404: 502-506 https://doi.org/10.1038/35006655
  79. Peters, J. E. and N. L. Craig. 2000. Tn7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates. Mol. Cell 6: 573-582 https://doi.org/10.1016/S1097-2765(00)00056-3
  80. Petit, M. A., C. Bruand, L. Janniere, and S. D. Ehrlich. 1990. Tn10-derived transposons active in Bacillus subtilis. J. Bacteriol. 172: 6736-6740 https://doi.org/10.1128/jb.172.12.6736-6740.1990
  81. Reznikoff, W. S. 2008. Transposon Tn5. Annu. Rev. Genet. 42:269-286 https://doi.org/10.1146/annurev.genet.42.110807.091656
  82. Rholl, D. A., L. A. Trunck, and H. P. Schweizer. 2008. Himar1 in vivo transposon mutagenesis of Burkholderia pseudomallei. Appl. Environ. Microbiol. 74: 7529-7535 https://doi.org/10.1128/AEM.01973-08
  83. Robert, V., F. Hayes, A. Lazdunski, and G. P. Michel. 2002. Identification of XcpZ domains required for assembly of the secretion of Pseudomonas aeruginosa. J. Bacteriol. 184:1779-1782 https://doi.org/10.1128/JB.184.6.1779-1782.2002
  84. Robertson, H. M. and D. J. Lampe. 1995. Distribution of transposable elements in arthropods. Annu. Rev. Entomol. 40:333-357 https://doi.org/10.1146/annurev.en.40.010195.002001
  85. Rowland, S. J. and K. G. Dyke. 1990. Tn552, a novel transposable element from Staphylococcus aureus. Mol. Microbiol. 4: 961-975 https://doi.org/10.1111/j.1365-2958.1990.tb00669.x
  86. Rubin, E. J., B. J. Akerley, V. N. Novik, D. J. Lampe, R. N. Husson, and J. J. Mekalanos. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc. Natl. Acad. Sci. U.S.A. 96: 1645-1650 https://doi.org/10.1073/pnas.96.4.1645
  87. Saenz, H. L. and C. Dehio. 2005. Signature-tagged mutagenesis:Technical advances in a negative selection method for virulence gene identification. Curr. Opin. Microbiol. 8: 612-619 https://doi.org/10.1016/j.mib.2005.08.013
  88. Sanchis, V., H. Agaisse, J. Chaufaux, and D. Lereclus. 1997. A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Appl. Environ. Microbiol. 63: 779-784
  89. Sassetti, C. M., D. H. Boyd, and E. J. Rubin. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. U.S.A. 98: 12712-12717 https://doi.org/10.1073/pnas.231275498
  90. Sassetti, C. M., D. H. Boyd, and E. J. Rubin. 2003.. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48: 77-84 https://doi.org/10.1046/j.1365-2958.2003.03425.x
  91. Schagen, F. H., H. J. Rademaker, S. J. Cramer, H. van Ormondt, A. J. van der Eb, P. van de Putte, and R. C. Hoeben. 2000. Towards integrating vectors for gene therapy: Expression of functional bacteriophage MuA and MuB proteins in mammalian cells. Nucleic Acids Res. 28: E104 https://doi.org/10.1093/nar/28.23.e104
  92. Schwan, W. R., S. N. Coulter, E. Y. Ng, M. H. Langhorne, H. D. Ritchie, L. L. Brody, et al. 1998. Identification and characterization of the PutP proline permease that contributes to in vivo survival of Staphylococcus aureus in animal models. Infect. Immun. 66: 567-572
  93. Scott, J. R. and G. G. Churchward. 1995. Conjugative transposition. Annu. Rev. Microbiol. 49: 367-397 https://doi.org/10.1146/annurev.mi.49.100195.002055
  94. Shan, Z., H. Xu, X. Shi, Y. Yu, H. Yao, X. Zhang, et al. 2004. Identification of two new genes involved in twitching motility in Pseudomonas aeruginosa. Microbiology 150: 2653-2661 https://doi.org/10.1099/mic.0.27131-0
  95. Shapiro, J. A. 1979. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc. Natl. Acad. Sci. U.S.A. 76: 1933-1937 https://doi.org/10.1073/pnas.76.4.1933
  96. Shen, H., S. E. Gold, S. J. Tamaki, and N. T. Keen. 1992. Construction of a Tn7-lux system for gene expression studies in Gram-negative bacteria. Gene 122: 27-34 https://doi.org/10.1016/0378-1119(92)90028-N
  97. Shevchenko, Y., G. G. Bouffard, Y. S. Butterfield, R. W. Blakesley, J. L. Hartley, A. C. Young, et al. 2002. Systematic sequencing of cDNA clones using the transposon Tn5. Nucleic Acids Res. 30: 2469-2477 https://doi.org/10.1093/nar/30.11.2469
  98. Shin, D. W., S. M. Lee, Y. R. Shin, and S. R. Ryu. 2006. Identification of a novel genetic locus affecting ptsG expression in Escherichia coli. J. Microbiol. Biotechnol. 16: 795-798
  99. Smith, V., D. Botstein, and P. O. Brown. 1995. Genetic footprinting: A genomic strategy for determining a gene's function given its sequence. Proc. Natl. Acad. Sci. U.S.A. 92:6479-6483 https://doi.org/10.1073/pnas.92.14.6479
  100. Smith, V., K. N. Chou, D. Lashkari, D. Botstein, and P. O. Brown. 1996. Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science 274: 2069-2074 https://doi.org/10.1126/science.274.5295.2069
  101. Stellwagen, A. E. and N. L. Craig. 2001. Analysis of gain-offunction mutants of an ATP-dependent regulator of Tn7 transposition. J. Mol. Biol. 305: 633-642 https://doi.org/10.1006/jmbi.2000.4317
  102. Stentz, R., M. Gasson, and C. Shearman. 2006. The Tra domain of the lactococcal CluA surface protein is a unique domain that contributes to sex factor DNA transfer. J. Bacteriol. 188: 2106-2114 https://doi.org/10.1128/JB.188.6.2106-2114.2006
  103. Stewart, B. J. and L. L. McCarter. 2003. Lateral flagellar gene system of Vibrio parahaemolyticus. J. Bacteriol. 185: 4508-4518 https://doi.org/10.1128/JB.185.15.4508-4518.2003
  104. Strathmann, M., B. A. Hamilton, C. A. Mayeda, M. I. Simon, E. M. Meyerowitz, and M. J. Palazzolo. 1991. Transposonfacilitated DNA sequencing. Proc. Natl. Acad. Sci. U.S.A. 88:1247-1250 https://doi.org/10.1073/pnas.88.4.1247
  105. Summer, E. J., C. F. Gonzalez, T. Carlisle, L. M. Mebane, A. M. Cass, C. G. Savva, J. LiPuma, and R. Young. 2004. Burkholderia cenocepacia phage BcepMu and a family of Mulike phages encoding potential pathogenesis factors. J. Mol. Biol. 340: 49-65 https://doi.org/10.1016/j.jmb.2004.04.053
  106. Swartley, J. S., C. F. McAllister, R. A. Hajjeh, D. W. Heinrich, and D. S. Stephens. 1993. Deletions of Tn916-like transposons are implicated in tetM-mediated resistance in pathogenic Neisseria. Mol. Microbiol. 10: 299-310 https://doi.org/10.1111/j.1365-2958.1993.tb01956.x
  107. Sydenham, M., G. Douce, F. Bowe, S. Ahmed, S. Chatfield, and G. Dougan. 2000. Salmonella enterica serovar Typhimurium surA mutants are attenuated and effective live oral vaccines. Infect. Immun. 68: 1109-1115 https://doi.org/10.1128/IAI.68.3.1109-1115.2000
  108. Taira, S., J. Tuimala, E. Roine, E. L. Nurmiaho-Lassila, H. Savilahti, and M. Romantschuk. 1999. Mutational analysis of the Pseudomonas syringae pv. tomato hrpA gene encoding Hrp pilus subunit. Mol. Microbiol. 34: 737-744 https://doi.org/10.1046/j.1365-2958.1999.01635.x
  109. Ton-Hoang, B., C. Guynet, D. R. Ronning, B. Cointin-Marty, F. Dyda, and M. Chandler. 2005. Transposition of ISHp608, member of an unusual family of bacterial insertion sequences. EMBO J. 24: 3325-3338 https://doi.org/10.1038/sj.emboj.7600787
  110. Tribble, G. D., A. C. Parker, and C. J. Smith. 1997. The Bacteroides mobilizable transposon Tn4555 integrates by a site-specific recombination mechanism similar to that of the Gram-positive bacterial element Tn916. J. Bacteriol. 179:2731-2739
  111. Tribble, G. D., A. C. Parker, and C. J. Smith. 1999. Transposition genes of the Bacteroides mobilizable transposon Tn4555: Role of a novel targeting gene. Mol. Microbiol. 34:385-394 https://doi.org/10.1046/j.1365-2958.1999.01616.x
  112. Vilen, H., S. Eerikainen, J. Tornberg, M. S. Airaksinen, and H. Savilahti. 2001. Construction of gene-targeting vectors: A rapid Mu in vitro DNA transposition-based strategy generating null, potentially hypomorphic, and conditional alleles. Transgenic Res. 10: 69-80 https://doi.org/10.1023/A:1008959231644
  113. Wall, J. D., T. Murnan, J. Argyle, R. S. English, and B. J. Rapp-Giles. 1996. Transposon mutagenesis in Desulfovibrio desulfuricans: Development of a random mutagenesis tool from Tn7. Appl. Environ. Microbiol. 62: 3762-3767
  114. Wang, Y. and P. C. Lau. 1996. Sequence and expression of an isocitrate dehydrogenase-encoding gene from a polycyclic aromatic hydrocarbon oxidizer, Sphingomonas yanoikuyae B1. Gene 168: 15-21 https://doi.org/10.1016/0378-1119(95)00732-6
  115. Weber, E. and R. Koebnik. 2005. Domain structure of HrpE, the Hrp pilus subunit of Xanthomonas campestris pv. vesicatoria. J. Bacteriol. 187: 6175-6186 https://doi.org/10.1128/JB.187.17.6175-6186.2005
  116. White, O., J. A. Eisen, J. F. Heidelberg, E. K. Hickey, J. D. Peterson, R. J. Dodson, et al. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286: 1571-1577 https://doi.org/10.1126/science.286.5444.1571
  117. Winson, M. K., S. Swift, P. J. Hill, C. M. Sims, G. Griesmayr, B. W. Bycroft, P. Williams, and G. S. Stewart. 1998. Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol. Lett. 163: 193-202 https://doi.org/10.1111/j.1574-6968.1998.tb13045.x
  118. Winterberg, K. M., J. Luecke, A. S. Bruegl, and W. S. Reznikoff. 2005. Phenotypic screening of Escherichia coli K-12 Tn5 insertion libraries, using whole-genome oligonucleotide microarrays. Appl. Environ. Microbiol. 71: 451-459 https://doi.org/10.1128/AEM.71.1.451-459.2005
  119. Wolkow, C. A., R. T. DeBoy, and N. L. Craig. 1996. Conjugating plasmids are preferred targets for Tn7. Genes Dev. 10: 2145-2157 https://doi.org/10.1101/gad.10.17.2145
  120. Wong, S. M. and J. J. Mekalanos. 2000. Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 97: 10191-10196 https://doi.org/10.1073/pnas.97.18.10191
  121. Wright, A. C., J. L. Powell, J. B. Kaper, and J. G. Morris Jr. 2001. Identification of a group 1-like capsular polysaccharide operon for Vibrio vulnificus. Infect. Immun. 69: 6893-6901 https://doi.org/10.1128/IAI.69.11.6893-6901.2001
  122. Youngman, P. J., J. B. Perkins, and R. Losick. 1983. Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proc. Natl. Acad. Sci. U.S.A. 80: 2305-2309 https://doi.org/10.1073/pnas.80.8.2305
  123. Youngman, P. J., J. B. Perkins, and K. Sandman. 1985. Use of Tn917-mediated transcriptional gene fusions to lacZ and cat-86 for the identification and study of spo genes in Bacillus subtilis, pp. 47-54. In J. A. Hoch and P. Setlow (eds.), Molecular Biology of Microbial Differentiation. ASM Press, Washington, D.C.
  124. Yu, B. J. and C. Kim. 2008. Minimization of the Escherichia coli genome using the Tn5-targeted Cre/loxP excision system. Methods Mol. Biol. 416: 261-277 https://doi.org/10.1007/978-1-59745-321-9_17

Cited by

  1. ModuleOrganizer: detecting modules in families of transposable elements vol.11, pp.None, 2009, https://doi.org/10.1186/1471-2105-11-474
  2. Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues vol.86, pp.4, 2010, https://doi.org/10.1007/s00253-010-2489-3
  3. ANVAYA: A WORKFLOWS ENVIRONMENT FOR AUTOMATED GENOME ANALYSIS vol.10, pp.4, 2009, https://doi.org/10.1142/s0219720012500060
  4. Harnessing the power of transposon mutagenesis for antibacterial target identification and evaluation vol.2, pp.4, 2009, https://doi.org/10.4161/mge.21647
  5. The private life of environmental bacteria: pollutant biodegradation at the single cell level vol.16, pp.3, 2009, https://doi.org/10.1111/1462-2920.12360
  6. Generation of comprehensive transposon insertion mutant library for the model archaeon, Haloferax volcanii , and its use for gene discovery vol.12, pp.None, 2009, https://doi.org/10.1186/s12915-014-0103-3
  7. Construction and Analysis of a Modified Transposable Element Carrying an Outward Directed Inducible Promoter for Bacillus subtilis vol.68, pp.5, 2009, https://doi.org/10.1007/s00284-013-0503-6
  8. A mariner transposon vector adapted for mutagenesis in oral streptococci vol.3, pp.3, 2014, https://doi.org/10.1002/mbo3.171
  9. Genetically modified microorganism Spingomonas paucimobilis UT26 for simultaneously degradation of methyl-parathion and γ-hexachlorocyclohexane vol.23, pp.5, 2009, https://doi.org/10.1007/s10646-014-1224-8
  10. Spatial and Temporal Features of the Growth of a Bacterial Species Colonizing the Zebrafish Gut vol.5, pp.6, 2009, https://doi.org/10.1128/mbio.01751-14
  11. Multicopy integration of mini-Tn7 transposons into selected chromosomal sites of a Salmonella vaccine strain vol.8, pp.1, 2009, https://doi.org/10.1111/1751-7915.12187
  12. Rapid construction of a whole-genome transposon insertion collection for Shewanella oneidensis by Knockout Sudoku vol.7, pp.1, 2016, https://doi.org/10.1038/ncomms13270
  13. A novel suicide shuttle plasmid for Streptococcus suis serotype 2 and Streptococcus equi ssp. zooepidemicus gene mutation vol.6, pp.None, 2009, https://doi.org/10.1038/srep27133
  14. Effect of Genome Position on Heterologous Gene Expression in Bacillus subtilis: An Unbiased Analysis vol.5, pp.9, 2009, https://doi.org/10.1021/acssynbio.6b00065
  15. DNA Transposition at Work vol.116, pp.20, 2009, https://doi.org/10.1021/acs.chemrev.6b00003
  16. Isolating Escherichia coli strains for recombinant protein production vol.74, pp.5, 2009, https://doi.org/10.1007/s00018-016-2371-2
  17. Pseudomonas putida rDNA is a favored site for the expression of biosynthetic genes vol.9, pp.None, 2009, https://doi.org/10.1038/s41598-019-43405-1
  18. GFP tagging of Brucella melitensis Rev1 allows the identification of vaccinated sheep vol.66, pp.1, 2009, https://doi.org/10.1111/tbed.13053
  19. A Mini-ISY100 Transposon Delivery System Effective in γ Proteobacteria vol.10, pp.None, 2009, https://doi.org/10.3389/fmicb.2019.00280
  20. Targeting 16S rDNA for Stable Recombinant Gene Expression in Pseudomonas vol.8, pp.8, 2009, https://doi.org/10.1021/acssynbio.9b00195
  21. Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii vol.12, pp.None, 2009, https://doi.org/10.1186/s13068-019-1448-1
  22. High-Titer De Novo Biosynthesis of the Predominant Human Milk Oligosaccharide 2′-Fucosyllactose from Sucrose in Escherichia coli vol.9, pp.10, 2009, https://doi.org/10.1021/acssynbio.0c00304
  23. A native, highly active Tc1/mariner transposon from zebrafish ( ZB ) offers an efficient genetic manipulation tool for vertebrates vol.49, pp.4, 2009, https://doi.org/10.1093/nar/gkab045
  24. Bacteria-Based Live Vehicle for In Vivo Bioluminescence Imaging vol.93, pp.47, 2009, https://doi.org/10.1021/acs.analchem.1c03568