A Study on the Biogeochemistry of the Sediments in the Han River Estuary

한강하구 퇴적물의 생지화학적 반응에 관한 연구

  • Lim, Bo-Mi (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Ki, Bo-Min (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Choi, Jung-Hyun (Department of Environmental Science and Engineering, Ewha Womans University)
  • 임보미 (이화여자대학교 환경공학과) ;
  • 기보민 (이화여자대학교 환경공학과) ;
  • 최정현 (이화여자대학교 환경공학과)
  • Received : 2009.07.08
  • Accepted : 2009.08.08
  • Published : 2009.10.31

Abstract

This research investigates the importance of the microbial metabolic pathways such as denitrification, iron reduction, and methanogenesis, in the degradation of organic matters of the sediments. There are statistically significant differences( P < 0.05) in the rates of denitrification, iron reduction, and methanogenesis according to the location: Site A has no plant, Site B is dominated by Scirpus, and Site C is dominated by Phragmites. Among them, Site C showed different methanogenesis rate depending on the sediments depth. The organic matter content increased from Site A to Site C. Site A had the smallest organic matter content whereas it showed the largest denitrification rate and iron reduction rate. Site C had the largest methanogenesis rate. Denitrification is the dominant pathways based on the assumption that anaerobic degradation of organic matter is mainly carried out through denitrification, iron reduction, and methanogenesis.

이 연구는 담수 퇴적물에서 주되게 일어나는 탈질(denitrification), 철 환원(iron reduction), 메탄 환원(methanogenesis) 반응이 퇴적물 유기물 분해에서 차지하는 중요도를 파악하였다. 탈질률, 철환원률, 메탄환원률 모두 식물이 존재하지 않는 Site A, 새섬매자기 군락이 서식하는 Site B, 갈대 군락이 서식하는 Site C에서 통계적으로 유의한 차이를 보였고(P < 0.05), 퇴적물 깊이에 따라서는 메탄환원률만이 유의한 차이를 보였다. 유기물 함량은 Site A, Site B, Site C 순으로 식물의 존재와 밀도 증가에 따라 증가하였다. Site A가 가장 낮은 유기물 함량을 나타냄에도 불구하고 가장 높은 탈질률과 철환원률을 나타내었고, 메탄환원률의 경우 Site C에서 가장 큰 값을 나타내었다. 유기물의 혐기성 분해가 주로 탈질, 철 환원, 메탄 환원에 의해 일어난다고 가정한다면, 한강하구의 경우 탈질이 유기물을 분해하는 가장 주된 반응임을 알 수 있었다.

Keywords

References

  1. Berner, R. A., Early diagenesis: a theoretical approach, Princeton University Press, Princeton, NJ, 241(1980)
  2. 최정현, 박석순,' 퇴적 유기물 분해과정에 따른 물질 거동 변화 예측을 위한 수침모델 적용,' 대한환경공학회지, 27(2), 151-157(2005)
  3. Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 'Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis,' Geochim. Cosmochim. Acta, 43, 1075-1090(1979) https://doi.org/10.1016/0016-7037(79)90095-4
  4. Megonigal, J. P., Hines, M. E., and Visscher, P. T., 'Anaerobic metabolism: linkages to trace gases and aerobic processes,' in W. H. Schlesinger, editor. Biogeochemistry, Elsevier-Pergamon, Oxford, UK, 317-424(2004)
  5. Armstrong, W., 'Aeration in higher plants,' Adv Bot Res, 7, 225-232(1979) https://doi.org/10.1016/S0065-2296(08)60089-0
  6. Mendelssohn, I. A., Keiss, B. A., and Wakeley, J. S., 'Factors controlling the formation of oxidized root channels: a review,' Wetlands, 15, 37-46(1995) https://doi.org/10.1007/BF03160678
  7. Sorrell, B. K., 'Effect of external oxygen demand on radial oxygen loss by juncos roots in titanium citrate solutions,' Plant Cell Environ., 22, 1587-1593(1999) https://doi.org/10.1046/j.1365-3040.1999.00517.x
  8. El-Shatnawi, M. K. J. and Makhadmeh, I. M., 'Ecophysiology of the plant-rhizosphere system,' J. Agron. Crop Sci., 187, 1-9(2001) https://doi.org/10.1046/j.1439-037X.2001.00498.x
  9. Xu, S., Leri, A. C., Myneni, S. C. B., and Jaff , P. R. 'Uptake of bromide by two wetland plants (Typhalatifolia L. and Phragmites australis (Cav.) Trin. ex Steud),' Environ. Sci. Technol., 38, 5642-5648(2004) https://doi.org/10.1021/es049568o
  10. Forstner, U., Ahlf, W., Calmano, W., Kersten, M., and Salomons, W., 'Mobility of heavy metals in dredged harbour sediments,' Sediments and water interactions (Ed. P.G. Sly), Springer-Verlag, New York, NY, 371-380(1986)
  11. 오강호, 고영구, 기주용, 김혜경, '화순천의 퇴적환경 및 퇴적물과 하천수의 지구화학적 특성,' 한국환경과학회지, 11(9), 881-895(2002)
  12. Wang, S., and Park, S.S., 'Modeling the fate and transport of arsenic in wetland sediments,' Korean J. Limnol., 36(4), 434-446(2003)
  13. 이미경, 배우근, 엄인권, 정회수, '영일만 해역 표층퇴적물의 금속 분포 특성,' 대한환경공학회지, 26(5), 543-551(2004)
  14. 이상미, 토양성분과 우점종이 다른 하구습지의 갈대군집 비교, 이화여자대학교, 석사학위 청구논문(2008)
  15. Groffman, P. M., Altabet, M. A., B hlke, J. K., Butterbach-Bahl, K., David, M. B., Firestone, M. K., Giblin, A. E., Kana, T. M., Nielsen, L. P., Voytek, M. A., 'Methods for measuring denitrification: diverse approaches to a difficult problem,' Ecol. Appl., 16, 2091-2122(2006) https://doi.org/10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2
  16. Klememdtsson, L., Svensson, B. H., Lindberg, T., Rosswall, T., 'The use of acetylene inhibition of nitrous oxide reductase in quantifying denitrification in soils,' Swedish J. Agricul. Res., 7, 179-185(1977)
  17. Yoshinari, T., Hynes, R., Knowles, R., 'Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil,' Soil Biol. Biochem., 9, 177-183(1977) https://doi.org/10.1016/0038-0717(77)90072-4
  18. Roden, E. E. and Wetzel, R. G., 'Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments,' Limnol. Oceanogr., 41(8), 1733-1748(1996) https://doi.org/10.4319/lo.1996.41.8.1733
  19. Neubauer, S. C., Givler, K., Valentine, S. K., and Megonigal J. P., 'Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry,' Ecology, 86(2), 3334-3344(2005) https://doi.org/10.1890/04-1951
  20. Redfield A.C., Ketchum B.H., and Richards F.A. 'The influence of organics on the composition of seawater,' in M. N. Hill, editor. The Sea, Wiley-Interscience, New York, 2, 26-77(1963)