Effect of Copper toxicant on Suspended and Attached Growth Nitrifying Bacteria

부유 및 부착성장 질화균에 미치는 구리 독성의 영향

  • Kim, Keum-Yong (Department of Environmental Engineering, Chungbuk National University) ;
  • Paek, Joo-Heon (Department of Environmental Engineering, Chungbuk National University) ;
  • Lee, Sang-Ill (Department of Environmental Engineering, Chungbuk National University)
  • 김금용 (충북대학교 공과대학 환경공학과) ;
  • 백주헌 (충북대학교 공과대학 환경공학과) ;
  • 이상일 (충북대학교 공과대학 환경공학과)
  • Received : 2008.07.02
  • Accepted : 2009.09.02
  • Published : 2009.10.31

Abstract

The effect of toxicant on the inhibition of nitrification was investigated, using concentrated nitrifying bacteria of both attached and suspended growth. This nitrifying organism was originally obtained from the activated sludge of sewage treatment plant and cultivated for more than three months. The object of this experiment is to determine the effect of the specific surface area and the growth condition of nitrifying bacteria on toxicity of heavy metal. The results of this study were as follows. The specific surface area of both attached and suspended growth of nitrifying organism was proven to be a major factors in determining the inhibition of nitrification of heavy metal such as $Cu^{++}$ion. When the condition of attachment and detachment was compared in an experiment using attached growth nitrifier, the effect on toxicant was 1.12 times less in attached condition than in detached condition for Nitrosomonas, and 1.09 times less for Nitrobacter. In case of suspended growth nitrifier, the effect on toxicant was 1.46 times less in non-ground condition than in ground condition for Nitrosomonas, and 1.35 times less for Nitrobacter. Also, similar results were obtained in a set of experiments, without adding nitrite to the substrate. In an experiment that compared attached condition using attached growth nitrifier with detached condition using attached growth nitrifier, the effect on toxicant was 1.83 times less in attached condition than in detached one for Nitrosomonas, and 1.78 times less for Nitrobacter. In case of suspended growth nitrifier, the effect on toxicant was 1.27 times less in non-ground condition than in ground condition for Nitrosomonas, and 1.32 times less for Nitrobacter.

본 연구에서는 질산화 반응이 활발히 진행되고 있는 기존 하수처리장 슬러지를 이용하여 3개월 이상 농축 배양한 후에 부착 및 부유성장 상태로 적응시킨 질화균을 이용하여 독성물질에 대한 영향을 조사하였다. 본 실험의 목적은 부유 및 부착성장 질화균을 이용하여 이들의 비표면적에 따른 독성물질의 영향을 상호비교하기 위한 것이다. 이를 위하여 부유 및 부착상태의 농축 질화균의 비표면적을 다르게 하여 각각에 대한 독성물질의 영향을 조사하였다. 연구 결과 부착성장 질화균 및 부유성장 질화균의 경우 비표면적이 클수록 독성에 대한 영향을 더 많이 받는 것으로 나타났다. 부착상태와 탈착상태의 질화균을 사용한 실험에서, 독성물질에 대한 영향은 탈착상태보다 부착상태에서 독성의 영향을 적게 받았으며, Nitrosomonas의 경우에는 1.12배, Nitrobacter의 경우에는 1.09배 독성의 영향을 적게 받았다. 부유성장 질화균을 사용한 경우에는 분쇄 전보다 분쇄 후에 독성의 영향을 더 크게 받았으며, Nitrosomonas의 경우에 1.46배, Nitrobacter의 경우에 1.35배 독성의 영향을 적게 받았다. 또한, 기질에 아질산염을 주입하지 않고 실험한 결과에서도 유사한 결과를 얻었다. 부착상태와 탈착상태의 질화균을 사용한 실험에서, 독성물질에 대한 영향은 탈착상태보다 부착상태에서 독성의 영향을 적게 받았으며, Nitrosomonas의 경우에는 1.83배, Nitrobacter의 경우에는 1.78배 독성의 영향을 적게 받았다. 부유성장 질화균을 사용한 경우에는 분쇄 전보다 분쇄 후에 독성의 영향을 더 크게 받았으며, Nitrosomonas의 경우에 1.27배, Nitrobacter의 경우에 1.32배 독성의 영향을 적게 받았다.

Keywords

References

  1. Dangcong et al., P. Dangcong, N. Bernet, J. Delgenes and R. Moletta, 'Effects of oxygen supply methods on the performance of a sequencing batch reactor for high ammonium nitrification,' Water Environ. Res. 72, 195-200(2000) https://doi.org/10.2175/106143000X137284
  2. Hu et al., Z. Hu, K. Chandran, D. Grasso and B. F. Smets, 'Effect of nickel and cadmium speciation on nitrification inhibition,' Environ. Sci. Technol. 36, 3074-3078(2002) https://doi.org/10.1021/es015784a
  3. Bitton, G., 'Bacterial and biochemical tests for assessing chemical toxicity in the aquatic environment,' A review, Crit. Rev. Environ. Control, 13, 51-67(1983) https://doi.org/10.1080/10643388309381702
  4. Beckman, W. J., 'Design and Operation of Combined Carbon Oxidation Nitrification Activated Sludge Plant', J. Wat. Pollut. Control. Fed. 44, 1916(1972)
  5. Skinner, F. A. and Walker, N., 'Growth of Nitrosomonas europaea in Bath and Continuos Culture,' Arch. Microbiol., 38, 339(1961)
  6. Herbert H. P. Fang, Li-Chong Xu, Kwong-Yu Chan, 'Effects of toxic metals and chemicals on biofilm and biocorrosion,' Water Res., 36(19), 4709-4716(2002) https://doi.org/10.1016/S0043-1354(02)00207-5
  7. Bitton, G., Wastewater Microbiology, John Wiley & Sons, INC., New York, NY, 89-198,(1994)
  8. Painter, H. A. and Loveless, J. E. 'Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated-sludge precess', Water Res., 17(3), 237-248 (1983) https://doi.org/10.1016/0043-1354(83)90176-8
  9. 원성연, '질산화 반응에 미치는 환경인자의 영향' 충북대학교, 박사학위논문(1999)
  10. U. S. Environmental protection Agency(EPA), Manual nitrogen control, EPA/625/R-93/010, office of water, washington, D.C., (1995)
  11. Prakasam,T. B. S. and Loehr, R. C., 'Microbial Nitrification and denitrification in concentrated wastes', Water Res., 6, 859-869(1972) https://doi.org/10.1016/0043-1354(72)90038-3
  12. APHA-AWWA-WPC.F., Standard Methods for Examination of Water and Wastewater (21st ed.), Am. Public Health Ass, Washington DC, U.S.A. (2005)
  13. Yakup K. 'The impact of toxicity of metals on the activity of ureolytic mixed culture during the precipitation of calcium', J. Hazard. Mat., 163(2-3), 1063-1067(2009) https://doi.org/10.1016/j.jhazmat.2008.07.061
  14. 임정훈, 우혜진, 전병희, 고주형, 이상일, 김창원, 'MBBR에서 부하에 따른 생물막내 미생물종, 개체수 및 산소농도 분포', 대한환경공학회, 24(11), 2009-2018(2002)
  15. Skinner F. A. and Walker N., 'Growth of Nitrosomonas europaea in batch and continuous culture', Arch. Microbiol, 38, 339-349(1961)
  16. Loveless J. E. and Painter H. A., 'The influence of metal ion concentration and pH value on the growth of a Nitrosomonas strain isolated from activated sludge'. J.Gen. Microbiol., 52, 1-14(1968) https://doi.org/10.1099/00221287-52-1-1
  17. Koopman B. and Bitton G., Toxicity screening in wastewater systems. In: Toxicity testing Using Microorganisms Dutka B.J.and Bitton G.(eds.), CRC Press, Boca Raton, Fla, USA. 101-132(1986)