Organic Matter Degradation and Nitrification Characteristics in Aerobic Digestion of Sewage Sludge

슬러지 호기성 소화공정에서의 유기물 분해 및 질산화 특성

  • Hwang, Eung-Ju (Department of Environmental Engineering, Daegu University)
  • 황응주 (대구대학교 환경공학과)
  • Received : 2008.07.18
  • Accepted : 2009.09.03
  • Published : 2009.10.31

Abstract

Continuous operation of aerobic sludge digestion reactor was attempted for 279 days. Anaerobic digester sludge, the target material of the experiment, was pretreated by sodium hydroxide at $40^{\circ}C$ for 120 minutes, and the pretreated sludge was fed to 5 L CSTR (continuous stirred tank reactor). Reactor performance was affected by properties of input sludge and HRT (hydraulic retention time). 6 days of HRT showed best and stable performance, and under this condition, removal rates of $NH_3$-N, SCOD, TKN, TCOD, SS, and VSS were 97.4%, 81.7%, 68.7%, 61.4%, 50.6%, and 47.0%, respectively. 73.9% of SS in anaerobic digester sludge was reduced by pretreatment and aerobic digestion. Effluent sludge had low soluble COD of 350 mg/L. This implied the sludge was stabilized and suitable for use as liquid fertilizer. Nitrification took place when HRT was higher than 4 days. $NO_3$-N concentration was as high as 658 mg/L while $NH_3$-N was as low as 20 mg/L.

슬러지의 감량과 최종처분 기술 개발을 위해 실험실 규모 호기성 소화공정을 279일간 운전하였다. 혐기성 소화 슬러지를 원료로 $40^{\circ}C$에서 120분간 알칼리 전처리하여 호기성 소화조에 유입시켰다. 유입 슬러지 성상과 HRT의 변화에 따라 소화효율의 변화가 있었으며 적정 HRT는 6일인 것으로 나타났다. 이때 $NH_3$-N, SCOD, TKN, TCOD, SS, VSS의 평균 제거율(소화조 유입 슬러지 기준)은 각각 97.4%, 81.7%, 68.7%, 61.4%, 50.6%, 47.0% 이었다. SS는 전처리와 호기성 소화를 통해 원료 슬러지(23,920 mg/L)의 73.9% 감량화가 가능하였다. 처리 슬러지는 약 350 mg/L의 SCOD를 포함하고 있어 액비로 활용하기에 무리가 없을 것으로 판단되었다. HRT를 5일 이상으로 유지할 경우 질산화 반응이 활성화되었으며 최대 658 mg/L의 유출 슬러지 질산성 질소 농도를 얻을 수 있었다. 암모니아성 질소 농도는 20 mg/L 내외로 크게 감소하였다.

Keywords

References

  1. 환경부, 하수도 통계, http://info.waternow.go.kr
  2. 신총식, '유기성오니 처리 종합대책(안)', 특별 기획 Symposium: 해양투기 금지에 따른 유기성오니(하수오니) 종합대책 및 기술동향, 한국폐기물학회, 대전, pp. 1-17(2006)
  3. Aerts, R. and Berendse, F., 'The effect of increased nutrient availability on vegetation dynamics in wet healthlands', Vegetation, 76, 63-69(1988)
  4. Bobbink, R. and Berendse, F., 'A comparative study on nutrient cycling in wet healthland ecosystem II. Litter decomposition and nutrient mineralization', Oecologia, 78, 338-348(1989) https://doi.org/10.1007/BF00379107
  5. Munson, A. D. and Bernier, P. Y., 'Comparing natural and planted black spruce seedling II. Nutrient uptake and efficiency of use', J. Forest Res., 23, 2435-2442 (1993) https://doi.org/10.1139/x93-301
  6. Smith, S. R., Agricultural Recycling of Sewage Sludge and the Environment. CAB International, (1996)
  7. Viraraghavan, T. and Ionescu, M., 'Land application of phosphorus~laden sludge: a feasibility analysis', J. Environ. Management, 64(2), 171-177(2002) https://doi.org/10.1006/jema.2001.0520
  8. Singh, R. P. and Agrawal, M., 'Potential benefits and risks of land application of sewage sludge', Waste Management, 28(2), 347-358(2008) https://doi.org/10.1016/j.wasman.2006.12.010
  9. 이영옥, 황진규, 황응주, 슬러지 액비의 비효효과 및 안정성 평가', 대한환경공학회지, 30(3), 314-322(2008)
  10. Mason, C. A., Hamer, G., Fleischmann, Th., and Lang, C., 'Bioparticulate solubilization and biodegradation in semicontinuous aerobic thermophilic digestion', Water, Air, Soil Pollut., 34(4), 399-407(1987)
  11. Khalili, N. R., Chaib, E., Parulekar, S. J., and Nykiel, D., 'Performance enhancement of batch aerobic digesters vai addition of digested sludge', J. Hazard. Mater., B76, 91-102(2000)
  12. Oviedo, M. D. C., Ramirez, J. A. L., Marquez, D. S., Alonso, J. M. Q., 'Evolution of an activated sludge system under starvation conditions', Chem. Eng. J., 94, 139-146(2003) https://doi.org/10.1016/S1385-8947(03)00022-6
  13. Estrada, I. B., Gomez, E., Aller, A., Moran, A., 'Microbial monitoring of the influence of the stabilization degree of sludge when applied to soil', Bioresour. Technol., 97(11), 1308-1315(2006) https://doi.org/10.1016/j.biortech.2005.05.024
  14. 황응주, '알칼리 전처리에 의한 슬러지 호기성 소화 및 액비 특성 변화', 대한환경공학회지, 30(1), 90-96(2008)
  15. American Public Health Association/American Water Works Association/Water Environment Federation, Standard Methods for the Examination of water and Wastewater, 20th edn, (1998)
  16. Rittmann, B. E. and McCarty, P. L., Environmental Biotechnology, McGraw-Hill Korea(한역판), 579-590(2002)
  17. Neyen, E., Baeyens, J., and Creemers, C., 'Alkaline thermal sludge hydrolysis', J. Hazard. Mater., B97, 295-314 (2003)
  18. Anderson, B. C. and Mavinic, D. S., 'Behaviour and control of nutrients in the enhanced aerobic digestion process: pilot scale studies', Environ. Technol., 14, 301-318(1993) https://doi.org/10.1080/09593339309385295
  19. Bhargava, D. S. and Datar, M. T., 'Ananalysis of nitrification during the aerobic digestion of secondary sludges', Environ. Pollut., 58(1), 57-72(1989) https://doi.org/10.1016/0269-7491(89)90237-6
  20. Genc, N., Yonsel, S., Dagasan, L., and Onar, A. N., 'Investigation of organic nitrogen and carbon removal in the aerobic digestion of various sludges', Environ. Monitoring Assessment, 80, 97-106(2002) https://doi.org/10.1023/A:1020324528216
  21. Matsuda, A., Ide, T., and Fujii, S., 'Behaviour of nitrogen and phosphrous during batch aerobic digestion of waste activated sludge-continuous aeration and intermittent aeration by control of DO', Water Res., 22(12), 1495-1501(1988) https://doi.org/10.1016/0043-1354(88)90161-3
  22. California Compost Quality Council, Compost Maturity Index, pp. 9-11(2001)