Removal of Volatile Organic Compounds using Candida tropicalis Immobilized on Polymer Gel Media in an Airlift Loop Bioreactor

Candida tropicalis 포괄고정 담체를 적용한 Airlift Loop Bioreactor에서의 복합 휘발성유기화합물 제거

  • NamGung, Hyeong-Kyu (Department of Civil & Environmental Engineering, Sejong University) ;
  • Ha, Jeong-Hyub (Department of Civil & Environmental Engineering, Sejong University) ;
  • Hwang, Sun-Jin (Department of Environmental Science & Engineering, Kyunghee University) ;
  • Song, Ji-Hyeon (Department of Civil & Environmental Engineering, Sejong University)
  • 남궁형규 (세종대학교 토목환경공학과) ;
  • 하정협 (세종대학교 토목환경공학과) ;
  • 황선진 (경희대학교 환경학 및 환경공학과) ;
  • 송지현 (세종대학교 토목환경공학과)
  • Received : 2009.06.09
  • Accepted : 2009.07.14
  • Published : 2009.08.31

Abstract

This research was performed to improve removal efficiency of toluene and methyl ethyl ketone (MEK) using Candida tropicalis, one of the yeast species. An airlift loop bioreactor (ALB) was employed to enhance the capability of mass transfer for toluene and MEK from the gas phase to the liquid, microbial phase. Polymer gel media made from PAC, alginate and PEG was applied for the effective immobilization of the yeast strain on the polymer gel media. The experimental results indicated that the mass transfer coefficient of toluene without polymer gel media was 1.29 $min^{-1}$ at a gas retention time of 15 sec, whereas the KLa value for toluene was increased to 4.07 $min^{-1}$ by adding the media, confirming the enhanced mass transfer of volatile organic compounds between the gas and liquid phases. The removal efficiency of toluene and MEK by using yeast-immobilized polymer gel media in the ALB was greater than 80% at different pollutant loading rates (5, 10, 19 and 37 g/$m^3$/hr for toluene, 4.5, 8.9, 17.8 and 35.1 g/$m^3$/hr for MEK). In addition, an elimination capacity test conducted by changing inlet loading rates stepwise demonstrated that maximum elimination capacities for toluene and MEK were 70.4 and 56.4 g/$m^3$/hr, respectively.

본 연구는 휘발성유기화합물질의 분해능력을 가진 yeast인 Candida tropicalis를 이용하여, 대표적인 휘발성 유기화합물질인 톨루엔과 MEK의 제거효율을 향상시키기 위하여 수행되었다. 반응기는 가스상으로 유입되는 톨루엔과 MEK의 물질전달 능력을 향상시키기 위하여 airlift loop 형태로 선택하였고, yeast 미생물의 효과적인 포괄고정화를 위해 분말활성탄(PAC)과 알지네이트(Alginate), PEG로 고분자 담체를 형성하였다. Airlift loop bioreactor의 물질전달성능을 평가하기 위한 실험을 수행하였으며, 기체체류시간 15초에서 담체를 첨가하지 않은 액상의 톨루엔 물질전달계수($K_La$) 값이 1.29 $min^{-1}$이었으나, 고분자 담체를 첨가한 경우 톨루엔의 $K_La$는 4.07 $min^{-1}$로 증가하였다. 따라서 고분자담체를 적용하는 것이 기상으로 유입되는 휘발성유기화합물의 물질전달을 향상시키는 것으로 확인되었다. 이러한 airlift loop bioreactor와 yeast 포괄고정 담체를 적용하여 체류시간을 60초, 30초, 15초에서 유입부하에 변화를 주며 실험을 진행한 결과, 톨루엔 5, 10, 19, 37 g/$m^3$/hr, MEK 4.5, 8.9, 17.8, 35.1 g/$m^3$/hr의 유입부하 변화에도 전체 80% 이상의 안정적인 처리효율을 나타내었다. 또한 airlift loop bioreactor의 분해능을 확인하기 위하여 유입부하를 단기간 변화시켜 주며 실험한 결과, 톨루엔과 MEK의 최대분해능은 각각 70.4 g/$m^3$/hr, 56.4 g/$m^3$/hr로 확인되었다.

Keywords

References

  1. Kennes, C., and Veiga, M. C., 'Bioreactors for waste gas treatment,'Kluwer Academic Publishers(2001)
  2. 김대승, '산업현장의 악취 제어기술과 최근동향,'한국공업화학회 환경기술심포지엄, pp. 111-134(2000)
  3. Shareefdeen, Z., and Singh, A.,' Biotechnology for odor and air pollution control,'Springer(2005)
  4. Kinney, K. A., Loehr, R. C., and Corsi R. L., 'Vapor-phase bioreactors: avoiding operation,' Environ. Prog., 18, 222-230(1999) https://doi.org/10.1002/ep.670180319
  5. Xi, J., Hu, H. Y., and Qian, Y., 'Effect of operating conditions on long-term performance of a biofilter treating gaseous toluene: Biomass accumulation and stable-run time estimation,' Biochem. Eng. J., 31(2), 165-172(2006) https://doi.org/10.1016/j.bej.2006.07.002
  6. Ensley, B. D., and Kurisko, P. R., 'A gas lift bioreactor for removal of contaminants from the vapor phase,' Appl. Environ. Microbiol., 60(1), 285-290(1994)
  7. Lee, S. B., Strand, S. E., and Stensel, H. D., 'SustainedDegradation of Trichloroethylene in a Suspended Growth Gas Treatment Reactor by an Actinomycetes Enrichment,' Environ. Sci. Technol., 34(15), 3261-3268(2000) https://doi.org/10.1021/es9907515
  8. Weber, F. J., and Hartmans, S., 'Prevention of clogging in a biological trickle-bed reactor removing toluene from contaminated air,' Biotechnol. Bioeng., 50(1), 91-97(1995)
  9. Neal, A. B., and Loehr, R. C.,' Use of biofilters and suspendedgrowth reactors to treat VOCs,' Waste Manage., 20(1), 59-68(2000) https://doi.org/10.1016/S0956-053X(99)00297-4
  10. van Groenestijn, J. W., van Heiningen, W. N. M., and Kraakman, N. J. R., 'Biofilters based on the action of fungi,' Water Sci. Technol., 44(9), 227-232(2001)
  11. van Groenestijn, J. W., and Liu, J. X.,' Removal of alpha-pinene from gases using biofilters containing fungi,'Atmos. Environ., 36(35), 5501-5508(2002) https://doi.org/10.1016/S1352-2310(02)00665-9
  12. Woertz J. R., Kinney K. A., and McIntosh N. D. P.'Removal of toluene in a vapor-phase bioreactor containing a strain of the dimorphic black yeast Exophiala lecanii-corni,' Biotechnol. Bioeng., 75(5), 550-558(2001) https://doi.org/10.1002/bit.10066
  13. Kim, T. Y., Jin, H. J., Park, S. S., Kim, S. J., and Cho, S. Y., 'Adsorption equilibrium of copper ion and phenol by powdered activated carbon, alginate bead and alginate-activated carbon bead,'J. Industrial Eng. Chem., 14, 714-719(2008) https://doi.org/10.1016/j.jiec.2008.07.004
  14. 홍성호, 이충식, 이제근, '제올라이트/폴리에틸렌 복합 담체를 이용한 biotricking filter에서 톨루엔 제거 특성,' 대한환경공학회지, 27(6), 573-580(2005)
  15. Yan, J., Jianping, W., Hongmei, L., Suliang, Y., and Zongding, H., 'The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis,' Biochem. Eng. J., 24(3), 243-247(2005) https://doi.org/10.1016/j.bej.2005.02.016
  16. Yan, J., Jianping, W., Jing, B., Daoquan, W., and Zongding, H., 'Phenol biodegradation by the yeast Candida tropicalis in the presence of m-cresol,' Biochem. Eng. J., 29(3), 227-234(2006)
  17. Meng, L., Bando. Y., and Nakamura. M., 'Development of rectangular airlift for enhancement of nitrogen removal', J. Biosci. Bioeng., 98(4), 269-273(2004) https://doi.org/10.1016/S1389-1723(04)00280-4
  18. Lu, X., Ding, J., Wang, Y., and Shi. J., 'Comparison of the hydrodynamics and mass transfer characteristics of a modified square airlift reactor with common airlift reactors,'Chem. Eng. Sci., 55, 2257-2263(2000) https://doi.org/10.1016/S0009-2509(99)00473-X
  19. Lo, C. S., and Hwang, S. J.,' Dynamic behavior of an internalloop airlift bioreactor for degradation of waste gas containing toluene,'Chem. Eng. Sci., 59, 4517-4530(2004) https://doi.org/10.1016/j.ces.2004.07.002
  20. 류희욱, 장용근, 김상돈, 'Airlift 생물반응기,'한국생물공학회지, 9(4), 347-364(1994)
  21. 서근학, 김병진, 오창섭, 'PVA에 고정화된 질화세균군에 의한 암모니아성 질소 제거 I. 충진률 및 공기 유입량이 암모니아성질소제거에 미치는 영향,'한국생물공학회지, 16(3), 314-319 (2001)
  22. Demming, S., Gautier, A., Legallais, C., and Ould-Dris, A., 'Solid-liquid mass transfers in an Airlift Reactor incorporating alginate beads for the application as a bioartificial liver,' Chem. Eng. Prog., 47(12), 2370-2378 (2008) https://doi.org/10.1016/j.cep.2008.01.013